Abstract
A practical and simple method that allows preparation of azides from alcohols is described. The process involves oxyphosphonium-type activation and it is based upon the use of nicotinoyl azide (NCA), a cheap and easily accessible azide ion source.
Key words
azides - alcohols - nicotinoyl azide (NCA)
References
See for example:
1a
Zhang S.
Reith MEA.
Dutta AK.
Bioorg. Med. Chem. Lett.
2003,
13:
1591
1b
Deng W.-P.
Nam G.
Fan J.
Kirk KL.
J. Org. Chem.
2003,
68:
2798
1c
Jung YJ.
Chang YM.
Lee JH.
Yoon CM.
Tetrahedron Lett.
2002,
38:
8735
2a
Meyer J.
Helv. Chim. Acta
1919,
2:
635
2b For recent examples see the following: Michellizza S.
Al-Mourabit A.
Gateau-Olesker A.
Marazano C.
J. Org. Chem.
2002,
67:
6474
2c
Battaglia A.
Barbaro G.
Giorgianni P.
Guerrini A.
Pepe A.
Tetrahedron: Asymmetry
2001,
12:
1015
3a For a treatise on azides, which includes discussion of rearrangement reactions, see: Scriven EFV.
Azides and Nitrenes
Academic Press;
New York:
1984.
3b For a review of rearrangement of alkyl and aryl azides, see: Stevens TS.
Watts WE.
Selected Molecular Rearrangements
Van Nostrand Reinhold;
London:
1973.
See for examples:
4a
Katritzky A.
Singh SK.
J. Org. Chem.
2002,
67:
9077
4b
Trauner D.
Porth S.
Opatz T.
Bats JW.
Geister G.
Multzer J.
Synthesis
1998,
653
4c
Schultz AG.
Dai M.
Kim SK.
Pettus L.
Thakhar K.
Tetrahedron Lett.
1998,
39:
4203
4d
Kolb HC.
Sharpless B.
Drug Discov. Today
2003,
8:
1128
5
Stork G.
Niu D.
Fujimoto A.
Koft ER.
Balkovec JM.
Tata JR.
Dake GR.
J. Am. Chem. Soc.
2001,
123:
3239
6a
Schildknegt K.
Agrios KA.
Aubé J.
Tetrahedron Lett.
1998,
39:
7687
6b
Milligan GL.
Mossman CJ.
Aubé J.
J. Am. Chem. Soc.
1995,
117:
10449
7 See for example: Ito M.
Koyakumaru K.-I.
Ohta T.
Takaya H.
Synthesis
1995,
376
8a
Biffin MEC.
Miller J.
Paul DB. In The Chemistry of the Azido Group
Patai S. Wiley Interscience;
New York:
1971.
p.57
8b
Alvarez SG.
Alvarez MT.
Synthesis
1997,
413
9a
Vatèle JM.
Hanessian S.
Tetrahedron
1996,
52:
10557
9b
Vatèle JM.
Hanessian S.
Tetrahedron Lett.
1981,
22:
3579
10a
Mitsunobu O.
Synthesis
1981,
1
10b
Hughes DL.
Org. React.
1992,
42:
335
11a
Loibner H.
Zbiral E.
Helv. Chim. Acta
1976,
59:
2100
11b
Chen C.-P.
Prasad K.
Repic O.
Tetrahedron Lett.
1991,
32:
7175
12
Viaud MC.
Rollin P.
Synthesis
1990,
130
13
Lal B.
Pramanik BN.
Manhas MS.
Bose AK.
Tetrahedron Lett.
1977,
23:
1977
14
He L.
Wanunu M.
Byun H.-S.
Bittman R.
J. Org. Chem.
1999,
64:
6049
15
Firouzabadi H.
Iranpoor N.
Sobhani S.
Tetrahedron
2004,
60:
203
16
Iranpoor N.
Firouzabadi H.
Akhlaghinia B.
Nowrouzi N.
Tetrahedron Lett.
2004,
45:
3291
17
Thompson AS.
Humphrey GR.
DeMarco AM.
Mathre DJ.
Grabowski EJJ.
J. Org. Chem.
1993,
58:
5886
18
Mizuno M.
Shioiri T.
Chem. Commun.
1997,
2165
19
Satish Kumar N.
Praveen Kumar K.
Pavan Kumar KVP.
Praveen K.
Vittal JJ.
Swamy Kumara KC.
J. Org. Chem.
2004,
69:
1880
20
Froeyen P.
Phosphorous, Sulfur, Silicon Relat. Elem.
1993,
78:
161
21
Breslow DS.
J. Am. Chem. Soc.
1950,
72:
4244
22
Halgren TA.
J. Computational Chem.
1996,
17:
490
23 DSC (Mettler-Toledo Star® System, heating rate: 10 °C min-1 ): endothermic effect between 40 °C and 66 °C (melting of the reagent, ΔHendo = 106 J g-1 ); exothermic effect between 73 °C and 151 °C (Schmidt rearrangement plus decomposition, ΔHexo = 1051 J g-1 ).
See for examples:
24a
Iyengar BS.
Dorr RT.
Alberts DS.
Hersh EM.
Salmon SE.
Remers W.
J. Med. Chem.
1999,
42:
510
24b
L’Abbe G.
Synthesis
1987,
525
25
Casimiro-Garcia A.
Clercq ED.
Pannecoque C.
Witvrouw M.
Stup TL.
Bioorg. Med. Chem.
2000,
8:
197
26
Freiberg LA.
J. Org. Chem.
1965,
30:
2476
27a
Gòmez-Vidal JA.
Silverman RB.
Org. Lett.
2001,
3:
2481
27b
Marusawa H.
Setoi H.
Sadawa A.
Kuroda A.
Seki J.
Motoyama Y.
Tanaka H.
Bioorg. Med. Chem.
2002,
10:
1399
28a
Finke PE.
Oates B.
Sanders MG.
MacCoss M.
Malkowitz L.
Springer MS.
Gould SL.
DeMartino JA.
Carella A.
Carver G.
Holmes K.
Bioorg. Med. Chem.
2001,
11:
2475
28b
Moore KW.
Bonner K.
Jones EA.
Emms F.
Leeson PD.
Bioorg. Med. Chem.
1999,
9:
1285
29
Ito M.
Koyakumaru K.
Otha T.
Takaya H.
Synthesis
1995,
4:
376
30a
Kevill DN.
Weitl FL.
J. Org. Chem.
1970,
35:
2526
30b
Sasaki T.
Eguchi S.
Katada T.
Hiroaki O.
J. Org. Chem.
1977,
42:
3741
31
Mark E.
Zbiral E.
Monatsh. Chem.
1981,
112:
215
For a review see:
32a
Shea KJ.
Tetrahedron
1980,
363:
1683
32b For a review on bridgehead alkenes, see the following: Warner PM.
Chem. Rev.
1989,
89:
1067
32c
Billups WE.
Haley MM.
Lee G.
Chem. Rev.
1989,
89:
1147
33a
Barret IC.
Kerr MA.
Synlett
2000,
11:
1673
33b
Hassner A.
Stern M.
Angew. Chem.
1986,
98:
479
34
Sampath Kumar HM.
Reddy BVS.
Anjaneyulu S.
Yadav JS.
Tetrahedron Lett.
1998,
39:
7385
35
Occhiato E.
Jones JB.
Tetrahedron
1996,
52:
4199
36a
Tao L.
Wang Y.-G.
Ma C.
Zheng B.
Chen Y.-Z.
Synth. Commun.
1999,
29:
2053
36b
Xu H.
Zhang X.
Tian X.
Lu M.
Wang Y.-G.
Chem. Pharm. Bull.
2002,
50:
399
37
Kanai T.
Kanagawa Y.
Ishii Y.
J. Org. Chem.
1990,
55:
3274
38
Malkov AV.
Spoor P.
Vinader V.
Kocovsky P.
J. Org. Chem.
1999,
64:
5308
39a
Murahashi S.-I.
Taniguchi Y.
Imada Y.
Tanigawaq Y.
J. Org. Chem.
1989,
54:
3292
39b
Murahashi S.-I.
Taniguchi Y.
Imada Y.
Tanigawaq Y.
Tetrahedron Lett.
1986,
27:
227
39c
Varma RS.
Naicker KP.
Tetrahedron Lett.
1998,
39:
2915
40
Varasi M.
Walker KAM.
Maddox ML.
J. Org. Chem.
1987,
52:
4235
41
Afonso CM.
Barros MT.
Godinho LS.
Maycock CD.
Tetrahedron
1994,
50:
9671
42
1 H NMR (300 MHz, CDCl3 ): δ = 1.24-1.31 (m, 6 H), 4.15-4.27 (m, 4 H), 7.35-7.42 (m, 1 H), 7.96-7.98 (d, J = 7.6 Hz, 1 H), 8.71-8.73 (d, J = 5 Hz, 1 H), 8.86 (s, 1 H). MS m/z = 282.26 (MH+ ).