Subscribe to RSS
DOI: 10.1055/s-2004-831307
Protecting Group Effects on the Efficiency of the Ruthenium-Catalyzed Alder-Ene Reaction
Publication History
Publication Date:
26 August 2004 (online)
Abstract
The efficiency of the ruthenium-catalyzed Alder-ene reaction of hydroxy alkenes depends heavily on the nature of the O-protecting groups employed, as well as the length of the carbon spacer between the hydroxy and alkene group.
Key words
Alder-ene reaction - ruthenium catalysis - O-protecting groups
-
1a
Trost BM.Indolese A. J. Am. Chem. Soc. 1993, 115: 4361 -
1b
Trost BM.Indolese AF.Müller TJJ.Treptow B. J. Am. Chem. Soc. 1995, 117: 615 -
1c
Dérien S.Ropartz L.Le Paih J.Dixneuf PH. J. Org. Chem. 1999, 64: 3524 -
1d
Trost BM.Machacek M.Schnaderbeck MJ. Org. Lett. 2000, 2: 1761 -
1e
Trost BM.Toste FD.Pinkerton AB. Chem. Rev. 2001, 101: 2067 -
1f
Trost BM.Surivet J.-P.Toste FD. J. Am. Chem. Soc. 2001, 123: 2897 -
1g
Trost BM.Surivet J.-P. Angew. Chem. Int. Ed. 2001, 40: 1468 -
1h
Trost BM.Pinkerton AB.Toste FD.Sperrle M. J. Am. Chem. Soc. 2001, 123: 12504 -
1i
Trost BM.Chisholm JD.Wrobleski ST.Jung M. J. Am. Chem. Soc. 2002, 124: 12420 -
1j
Trost BM.Shen HC.Pinkerton AB. Chem.-Eur. J. 2002, 8: 2341 -
1k
Trost BM.Machacek MR. Angew. Chem. Int. Ed. 2002, 41: 4693 - For examples of internal coordination directing β-hydrogen elimination in Alder-ene reactions:
-
3a
Slugovc C.Mereiter K.Schmid R.Kirchner K. Organometallics 1999, 18: 1011 -
3b
Trost BM.Tanoury GJ.Lautens M.Chan C.MacPherson DT. J. Am. Chem. Soc. 1994, 116: 4255 -
5a
Mitsudo T.Zhang S.-W.Nagao M.Wantanabe Y. J. Chem. Soc., Chem. Commun. 1991, 598 -
5b
Trost BM.Imi K.Indolese AF. J. Am. Chem. Soc. 1993, 115: 8831 -
5c
Mirsudo T.Naruse H.Kondo T.Ozaki Y.Wantanabe Y. Angew. Chem., Int. Ed. Engl. 1994, 33: 580 -
5d
Trost BM.Toste FD.Shen H. J. Am. Chem. Soc. 2000, 122: 2379 -
6a
Jaouen G.Vessieres A.Buttler IS. Acc. Chem. Res. 1993, 26: 361 -
6b
Pearson AJ.Park JG. J. Org. Chem. 1992, 57: 1744 -
6c
Pearson AJ.Lee K. J. Org. Chem. 1994, 59: 2304 -
6d
Janetka JW.Rich DH. J. Am. Chem. Soc. 1995, 117: 10585 -
6e
Pearson AJ.Zhang P.Lee K. J. Org. Chem. 1996, 61: 6581 -
6f
Pigge FC.Coniglio JJ. Curr. Org. Chem. 2001, 5: 757 - For examples of catalytic deactivation of CpRu+ complexes by η6-arene coordination, see:
-
7a
Trost BM.Imi K.Indolese AF. J. Am. Chem. Soc. 1993, 115: 8831 -
7b
Becker E.Slugovc C.Rüba E.Standfest-Hauser C.Mereiter K.Schmid R.Kirchner K. J. Organomet. Chem. 2002, 649: 55 -
7c
Rüba E.Schmid R.Kirchner K.Calhourda MJ. J. Organomet. Chem. 2003, 648: 204 -
8a
For CpRu(η6-anisole)BF4: 1H NMR (d 6-acetone): δ = 5.51 (s, 5 H, CpH), 6.13-6.53 (m, 5 H, ArH).
-
8b
Volkenau NA.Bolesova IN.Shulpina LS.Kitaigorodskii AN.Kravtsov DM. J. Organomet. Chem. 1985, 288: 341
References
(1 Z ,4 E )-( R )-1-Trimethylsilyl-2-(2′-methyl-3′- tert -butyldiphenylsilyloxy)-6-acetoxy-1,4-hexadiene. CpRu(MeCN)3PF6 (39 mg, 0.090 mmol) under Ar was treated with an acetone solution (2 mL) of 1-acetoxy-3-butene (170 mg, 1.5 mmol) and (R)-1-(trimethylsilyl)-4-methyl-5-(tert-butyldiphenylsilyloxy)-1-pentyne (123 mg, 0.300 mmol). The yellow solution was stirred at r.t. for 20 h. The reaction mixture was passed through a short plug of silica and concentrated in vaccuo. The residue was purified by column chromatography (increasing polarity from 1% to 10% EtOAc in petroleum spirit), which gave the title compound (134 mg, 0.256 mmol, 85% yield) as a colorless oil. Rf (11% EtOAc in petroleum spirit): 0.67. [α]D 25 +1.1 (c 6.7, CH2Cl2). MS (ES+): m/z (%) = 463.28 (100) [M - OAc], 540.32 (23) [M + NH4 +], 545.29 (33) [M + Na+], 561.26 (12) [M + K+], 655.20 (33) [M + Cs+]. HRMS (ES+): m/z [M + Na+] calcd for C31H46O3NaSi2: 545.2883; found: 545.2904. 1H NMR (300 MHz, CDCl3): δ = 0.06 [9 H, s, (CH3)3Si], 0.86 (3 H, d, J = 6.0 Hz, CH3CH), 1.06 [9 H, s, (CH3)3CSi], 1.82-2.02 (2 H, m, CH3CH and CHCH2C=), 2.05 [3 H, s, CH3C(O)O], 2.27 (1 H, dd, J = 12.9, 4.8 Hz, CH3CH), 2.74 (2 H, d, J = 6.6 Hz, =CHCH2CH=), 3.47 (2 H, d, J = 6.0 Hz, CH2OSi), 4.52 (2 H, d, J = 6.3 Hz, CH2OAc), 5.23 (1 H, s, TMSCH), 5.54 (1 H, dt, J = 15.3, 6.3 Hz, AcOCH2CH=CH), 5.73 (1 H, dt, J = 15.6, 6.9 Hz, AcOCH2CH=CH), 7.36-7.44 (6 H, m, SiPh), 7.62-7.68 (4 H, m, SiPh). 13C NMR (75 MHz, CDCl3): δ = 0.8 (CH3), 16.4 (CH3), 19.5 (C), 21.2 (CH), 27.2 (CH3), 34.2 (CH3), 39.6 (CH2), 41.8 (CH2), 65.3 (CH2), 69.5 (CH2), 125.8 (CH), 126.8 (CH), 127.8 (CH), 129.8 (CH), 134.1 (C), 134.3 (CH), 135.9 (CH), 155.3 (C), 171.0 (C=O).
4Whilst there are examples of other processes occurring when β-hydrogen elimination is inhibited,5 under the mild conditions employed only starting materials are recovered.