Subscribe to RSS
DOI: 10.1055/s-2004-831332
Double Stereodifferentiating Aldol Reactions Based on Chiral Ketones Derived from Lactic Acid: Synthesis of C1-C6 Fragment of Erythronolides
Publication History
Publication Date:
31 August 2004 (online)
Abstract
Highly stereoselective titanium-mediated aldol additions of ethyl ketones derived from lactic acid to α-methyl-β-OTBDPS chiral aldehydes are documented. One of these double stereodifferentiating processes represents the key step of a straightforward and efficient synthetic approach to the C1-C6 fragment of erythronolides.
Key words
aldol reactions - chiral ketones - erythronolides - stereoselective synthesis - titanium
-
1a
Heathcock CH.Pirrung MC.Buse CT.Hagen JP.Young SD.Sohn JE. J. Am. Chem. Soc. 1979, 101: 7077 -
1b
Masamune S.Ali SA.Snitman DL.Garvey DS. Angew. Chem., Int. Ed. Engl. 1980, 19: 557 -
1c
Masamune S.Choy W.Kerdersky FAJ.Imperiali B. J. Am. Chem. Soc. 1981, 103: 1566 -
1d
Van Draanen NA.Arseniyadis S.Crimmins MT.Heathcock CH.
J. Org. Chem. 1991, 56: 2499 - Paterson nicely established the synthetic utility of lactate-derived ketones in stereoselective syn and anti boron-mediated aldol reactions. See
-
2a
Paterson I.Wallace DJ.Velázquez SM. Tetrahedron Lett. 1994, 35: 9083 -
2b
Paterson I.Wallace DJ. Tetrahedron Lett. 1994, 35: 9087 -
2c
Paterson I.Wallace DJ.Cowden CJ. Synthesis 1998, 639 -
3a
Figueras S.Martín R.Romea P.Urpí F.Vilarrasa J. Tetrahedron Lett. 1997, 38: 1637 -
3b
Solsona JG.Romea P.Urpí F.Vilarrasa J. Org. Lett. 2003, 5: 519 -
3c
Solsona JG.Romea P.Urpí F. Tetrahedron Lett. 2004, 45: 5379 - 4
Masamune S.Choy W.Petersen JS.Sita LR. Angew. Chem., Int. Ed. Engl. 1985, 24: 1 -
5a
Heathcock CH.White CT. J. Am. Chem. Soc. 1979, 101: 7076 -
5b
Evans DA.Dart MJ.Duffy JL.Rieger DL. J. Am. Chem. Soc. 1995, 117: 9073 -
5c
Marco JA.Carda M.Díaz-Oltra S.Murga J.Falomir E.Roeper H. J. Org. Chem. 2003, 68: 8577 - 6 For an early example based on α-OTBDPS chiral aldehyde, see:
Esteve C.Ferreró M.Romea P.Urpí F.Vilarrasa J. Tetrahedron Lett. 1999, 40: 5083 - 7
Ferreró M.Galobardes M.Martín R.Montes T.Romea P.Rovira R.Urpí F.Vilarrasa J. Synthesis 2000, 1608 - 8
Roush WR.Palkowitz AD.Ando K. J. Am. Chem. Soc. 1990, 112: 6348 - 9 All new compounds have analytical and spectroscopic data consistent with the assigned structure. The absolute configurations were initially established by analogy and those of 5, 6, 9, 10, and 11 have been later confirmed by spectroscopic analysis of cyclic derivatives. See, for instance, ref. 3c
- 11
Roush WR. J. Org. Chem. 1991, 56: 4151 - 13
Solsona JG.Romea P.Urpí F. Org. Lett. 2003, 5: 4681 - 14
Tatsuta K. In Recent Progress in the Chemical Synthesis of AntibioticsLukacs G.Ohno M. Springer-Verlag; Berlin: 1990. - For recent examples, see the following reports and references therein:
-
15a
Evans DA.Kim AS.Metternich R.Novack VJ. J. Am. Chem. Soc. 1998, 120: 5921 -
15b
Hergenrother PJ.Hodgson A.Judd AS.Lee W.-C.Martin SF. Angew. Chem. Int. Ed. 2003, 42: 3278 -
15c
Peng Z.-H.Woerpel KA. J. Am. Chem. Soc. 2003, 125: 6018 -
16a
Stork G.Paterson I.Lee FKC. J. Am. Chem. Soc. 1982, 104: 4686 -
16b
Burke SD.Schoenen FJ.Murtiashaw CW. Tetrahedron Lett. 1986, 27: 449 -
16c
Stork G.Rychnovsky SD. J. Am. Chem. Soc. 1987, 109: 1565 -
16d
Nakata M.Arai M.Tomooka K.Ohsawa N.Kinoshita M. Bull. Chem. Soc. Jpn. 1989, 62: 2618 -
16e
Kochetkov NK.Sviridov AF.Ermolenko MS.Yashunsky DV.Borodkin VS. Tetrahedron 1989, 45: 5109 -
16f
Tone H.Nishi T.Oikawa Y.Hikota M.Yonemitsu O. Chem. Pharm. Bull. 1989, 37: 1167 -
16g
Mulzer J.Kirstein HM.Buschmann J.Lehmann C.Luger P. J. Am. Chem. Soc. 1991, 113: 910 -
16h
Hoffmann RW.Stürmer R. Chem. Ber. 1994, 127: 2511 -
17a
Narasaka K.Pai F.-C. Tetrahedron 1984, 40: 2233 -
17b
Chen K.-M.Hardtmann GE.Prasad K.Repic O.Shapiro MJ. Tetrahedron Lett. 1987, 28: 155 - 18
Nakata T.Tani Y.Hatozaki M.Oishi T. Chem. Pharm. Bull. 1984, 32: 1411 - 19
Kiyooka S.-i.Kuroda H.Shimasaki Y. Tetrahedron Lett. 1986, 27: 3009
References
As expected, the minor diastereomer observed in all cases is the alternative 4,5-syn isomer. No significant amounts of anti adducts were indeed detected throughout the overall study.
12Overall yields of purified materials are indicated. Diastereomeric ratios have been established through HPLC and NMR analysis.
20The relative 3,4-syn-4,5-syn configuration was secured by NMR studies of the dioxane moiety.
21Unexpectedly, this step turned out to be troublesome. Debenzylation with Pd(OH)2/C was sluggish in EtOAc and afforded a complex mixture in MeOH. Better results (60% yield) were obtained with 10% Pd/C in EtOH, although it was not possible to prevent partial removal of acetonide protecting group and the corresponding triol was produced in 25% yield. Finally, alcohol 16 was isolated in excellent yield (91%) after 3 h in EtOAc.
22Physical and spectroscopic data of ketone 13 are in agreement with those previously reported. See ref. 16a, 16f. Compound 13: colorless oil. Rf (hexanes-EtOAc 85:15) = 0.45. [α]D +23.1 (c 1.8, CHCl3). IR (film): ν = 2933, 1717, 1111, 1017 cm-1. 1H NMR (400 MHz, CDCl3): δ = 7.66-7.54 (4 H, m, ArH), 7.43-7.36 (6 H, m, ArH), 4.22 (1 H, d, J = 2.5 Hz, CH3COCHO), 3.73 (1 H, dd, J = 9.6 Hz, J = 1.9 Hz, CHOCHCH2OSi), 3.57 (1 H, dd, J = 10.3 Hz, J = 4.3 Hz, CHxHyOSi), 3.49 (1 H, dd, J = 10.3 Hz, J = 5.7 Hz, CHxHyOSi), 2.12 (3 H, s, CH3CO), 2.03-1.95 [1 H, m, OHCCH(CH3)CHO], 1.83-1.78 (1 H, m, CHCH2OSi), 1.48 (3 H, s, CH3CCH3), 1.41 (3 H, s, CH3CCH3), 1.06 [9 H, s, SiC(CH3)3], 1.05 (3 H, d, J = 6.8 Hz, CH3CHCH2OSi), 0.70 [3 H, d, J = 6.6 Hz, OHCCH(CH3)CHO]. 13C NMR (100.6 MHz, CDCl3): δ = 209.3 (C), 135.6 (CH), 135.5 (CH), 133.5 (C), 133.4 (C), 129.7 (CH), 127.7 (CH), 127.6 (CH), 99.4 (C), 79.4 (CH), 75.2 (CH), 64.9 (CH2), 36.7 (CH), 32.4 (CH), 29.8 (CH3), 27.0 (CH3), 26.8 (CH3), 19.3 (C), 19.1 (CH3), 14.2 (CH3), 6.5 (CH3). HRMS (+FAB): m/z calcd for C28H41O4Si [M + H]+: 469.2774. Found: 469.2762.