References
1a
Heathcock CH.
Pirrung MC.
Buse CT.
Hagen JP.
Young SD.
Sohn JE.
J. Am. Chem. Soc.
1979,
101:
7077
1b
Masamune S.
Ali SA.
Snitman DL.
Garvey DS.
Angew. Chem., Int. Ed. Engl.
1980,
19:
557
1c
Masamune S.
Choy W.
Kerdersky FAJ.
Imperiali B.
J. Am. Chem. Soc.
1981,
103:
1566
1d
Van Draanen NA.
Arseniyadis S.
Crimmins MT.
Heathcock CH.
J. Org. Chem.
1991,
56:
2499
Paterson nicely established the synthetic utility of lactate-derived ketones in stereoselective syn and anti boron-mediated aldol reactions. See
2a
Paterson I.
Wallace DJ.
Velázquez SM.
Tetrahedron Lett.
1994,
35:
9083
2b
Paterson I.
Wallace DJ.
Tetrahedron Lett.
1994,
35:
9087
2c
Paterson I.
Wallace DJ.
Cowden CJ.
Synthesis
1998,
639
3a
Figueras S.
Martín R.
Romea P.
Urpí F.
Vilarrasa J.
Tetrahedron Lett.
1997,
38:
1637
3b
Solsona JG.
Romea P.
Urpí F.
Vilarrasa J.
Org. Lett.
2003,
5:
519
3c
Solsona JG.
Romea P.
Urpí F.
Tetrahedron Lett.
2004,
45:
5379
4
Masamune S.
Choy W.
Petersen JS.
Sita LR.
Angew. Chem., Int. Ed. Engl.
1985,
24:
1
5a
Heathcock CH.
White CT.
J. Am. Chem. Soc.
1979,
101:
7076
5b
Evans DA.
Dart MJ.
Duffy JL.
Rieger DL.
J. Am. Chem. Soc.
1995,
117:
9073
5c
Marco JA.
Carda M.
Díaz-Oltra S.
Murga J.
Falomir E.
Roeper H.
J. Org. Chem.
2003,
68:
8577
6 For an early example based on α-OTBDPS chiral aldehyde, see: Esteve C.
Ferreró M.
Romea P.
Urpí F.
Vilarrasa J.
Tetrahedron Lett.
1999,
40:
5083
7
Ferreró M.
Galobardes M.
Martín R.
Montes T.
Romea P.
Rovira R.
Urpí F.
Vilarrasa J.
Synthesis
2000,
1608
8
Roush WR.
Palkowitz AD.
Ando K.
J. Am. Chem. Soc.
1990,
112:
6348
9 All new compounds have analytical and spectroscopic data consistent with the assigned structure. The absolute configurations were initially established by analogy and those of 5, 6, 9, 10, and 11 have been later confirmed by spectroscopic analysis of cyclic derivatives. See, for instance, ref. 3c
10 As expected, the minor diastereomer observed in all cases is the alternative 4,5-syn isomer. No significant amounts of anti adducts were indeed detected throughout the overall study.
11
Roush WR.
J. Org. Chem.
1991,
56:
4151
12 Overall yields of purified materials are indicated. Diastereomeric ratios have been established through HPLC and NMR analysis.
13
Solsona JG.
Romea P.
Urpí F.
Org. Lett.
2003,
5:
4681
14
Tatsuta K. In Recent Progress in the Chemical Synthesis of Antibiotics
Lukacs G.
Ohno M.
Springer-Verlag;
Berlin:
1990.
For recent examples, see the following reports and references therein:
15a
Evans DA.
Kim AS.
Metternich R.
Novack VJ.
J. Am. Chem. Soc.
1998,
120:
5921
15b
Hergenrother PJ.
Hodgson A.
Judd AS.
Lee
W.-C.
Martin SF.
Angew. Chem. Int. Ed.
2003,
42:
3278
15c
Peng Z.-H.
Woerpel KA.
J. Am. Chem. Soc.
2003,
125:
6018
16a
Stork G.
Paterson I.
Lee FKC.
J. Am. Chem. Soc.
1982,
104:
4686
16b
Burke SD.
Schoenen FJ.
Murtiashaw CW.
Tetrahedron Lett.
1986,
27:
449
16c
Stork G.
Rychnovsky SD.
J. Am. Chem. Soc.
1987,
109:
1565
16d
Nakata M.
Arai M.
Tomooka K.
Ohsawa N.
Kinoshita M.
Bull. Chem. Soc. Jpn.
1989,
62:
2618
16e
Kochetkov NK.
Sviridov AF.
Ermolenko MS.
Yashunsky DV.
Borodkin VS.
Tetrahedron
1989,
45:
5109
16f
Tone H.
Nishi T.
Oikawa Y.
Hikota M.
Yonemitsu O.
Chem. Pharm. Bull.
1989,
37:
1167
16g
Mulzer J.
Kirstein HM.
Buschmann J.
Lehmann C.
Luger P.
J. Am. Chem. Soc.
1991,
113:
910
16h
Hoffmann RW.
Stürmer R.
Chem. Ber.
1994,
127:
2511
17a
Narasaka K.
Pai F.-C.
Tetrahedron
1984,
40:
2233
17b
Chen K.-M.
Hardtmann GE.
Prasad K.
Repic O.
Shapiro MJ.
Tetrahedron Lett.
1987,
28:
155
18
Nakata T.
Tani Y.
Hatozaki M.
Oishi T.
Chem. Pharm. Bull.
1984,
32:
1411
19
Kiyooka S.-i.
Kuroda H.
Shimasaki Y.
Tetrahedron Lett.
1986,
27:
3009
20 The relative 3,4-syn-4,5-syn configuration was secured by NMR studies of the dioxane moiety.
21 Unexpectedly, this step turned out to be troublesome. Debenzylation with Pd(OH)2/C was sluggish in EtOAc and afforded a complex mixture in MeOH. Better results (60% yield) were obtained with 10% Pd/C in EtOH, although it was not possible to prevent partial removal of acetonide protecting group and the corresponding triol was produced in 25% yield. Finally, alcohol 16 was isolated in excellent yield (91%) after 3 h in EtOAc.
22 Physical and spectroscopic data of ketone 13 are in agreement with those previously reported. See ref. 16a, 16f. Compound 13: colorless oil. Rf (hexanes-EtOAc 85:15) = 0.45. [α]D +23.1 (c 1.8, CHCl3). IR (film): ν = 2933, 1717, 1111, 1017 cm-1. 1H NMR (400 MHz, CDCl3): δ = 7.66-7.54 (4 H, m, ArH), 7.43-7.36 (6 H, m, ArH), 4.22 (1 H, d, J = 2.5 Hz, CH3COCHO), 3.73 (1 H, dd, J = 9.6 Hz, J = 1.9 Hz, CHOCHCH2OSi), 3.57 (1 H, dd, J = 10.3 Hz, J = 4.3 Hz, CHxHyOSi), 3.49 (1 H, dd, J = 10.3 Hz, J = 5.7 Hz, CHxHyOSi), 2.12 (3 H, s, CH3CO), 2.03-1.95 [1 H, m, OHCCH(CH3)CHO], 1.83-1.78 (1 H, m, CHCH2OSi), 1.48 (3 H, s, CH3CCH3), 1.41 (3 H, s, CH3CCH3), 1.06 [9 H, s, SiC(CH3)3], 1.05 (3 H, d, J = 6.8 Hz, CH3CHCH2OSi), 0.70 [3 H, d, J = 6.6 Hz, OHCCH(CH3)CHO]. 13C NMR (100.6 MHz, CDCl3): δ = 209.3 (C), 135.6 (CH), 135.5 (CH), 133.5 (C), 133.4 (C), 129.7 (CH), 127.7 (CH), 127.6 (CH), 99.4 (C), 79.4 (CH), 75.2 (CH), 64.9 (CH2), 36.7 (CH), 32.4 (CH), 29.8 (CH3), 27.0 (CH3), 26.8 (CH3), 19.3 (C), 19.1 (CH3), 14.2 (CH3), 6.5 (CH3). HRMS (+FAB): m/z calcd for C28H41O4Si [M + H]+: 469.2774. Found: 469.2762.