References
1a
Pettit GR.
Cichacz ZA.
Gao F.
Herald CL.
Boyd MR.
Schmidt JM.
Hooper JNA.
J. Org. Chem.
1993,
58:
1302
1b
Pettit GR.
Cichacz ZA.
Gao F.
Herald CL.
Boyd MR.
J. Chem. Soc., Chem. Commun.
1993,
1166
1c
Pettit GR.
Herald CL.
Cichacz ZA.
Gao F.
Boyd MR.
Christie ND.
Schmidt JM.
Nat. Prod. Lett.
1993,
3:
239
1d
Pettit GR.
Herald CL.
Cichacz ZA.
Gao F.
Schmidt JM.
Boyd MR.
Christie ND.
Boettner FE.
J. Chem. Soc., Chem. Commun.
1993,
1805
1e
Pettit GR.
Cichacz ZA.
Herald CL.
Gao F.
Boyd MR.
Schmidt JM.
Hamel E.
Bai R.
J. Chem. Soc., Chem. Commun.
1994,
1605
2a
Kobayashi M.
Aoki S.
Sakai H.
Kawazon K.
Kihara N.
Sasaki T.
Kitagawa I.
Tetrahedron Lett.
1993,
34:
1993
2b
Kobayashi M.
Aoki S.
Sakai H.
Kawazon K.
Kihara N.
Sasaki T.
Kitagawa I.
Chem. Pharm. Bull.
1993,
41:
989
2c
Kobayashi M.
Aoki S.
Kitagawa I.
Tetrahedron Lett.
1994,
35:
1243
3
Fusetanai N.
Shinoda K.
Matsunaga S.
J. Am. Chem. Soc.
1993,
115:
3977
4
Pettit GR.
J. Nat. Prod.
1996,
59:
812
5a
Evans DA.
Coleman PJ.
Dias LC.
Angew. Chem., Int. Ed. Engl.
1997,
36:
2738
5b
Evans DA.
Trotter BW.
Côté B.
Coleman PJ.
Angew. Chem., Int. Ed. Engl.
1997,
36:
2741
5c
Evans DA.
Trotter BW.
Côté B.
Coleman PJ.
Dias LC.
Tyler AN.
Angew. Chem., Int. Ed. Engl.
1997,
36:
2744
5d
Evans DA.
Trotter BW.
Coleman PJ.
Côté B.
Dias LC.
Rajapakse HA.
Tyler AN.
Tetrahedron
1999,
55:
8671
6a
Guo J.
Duffy KJ.
Stevens KL.
Dalko PI.
Roth RM.
Hayward MM.
Kishi Y.
Angew. Chem. Int. Ed.
1998,
37:
187
6b
Hayward MM.
Roth RM.
Duffy KJ.
Dalko PI.
Stevens KL.
Guo J.
Kishi Y.
Angew. Chem. Int. Ed.
1998,
37:
192
7a
Smith ABIII.
Zhuang L.
Brook CS.
Lin Q.
Moser WH.
Trout REL.
Boldi AM.
Tetrahedron Lett.
1997,
38:
8671
7b
Smith AB.
Doughty VA.
Lin Q.
Zhuang L.
McBriar MD.
Boldi AM.
Moser WH.
Murase N.
Nakayama K.
Sobukawa M.
Angew. Chem. Int. Ed.
2001,
40:
191
7c
Smith AB.
Lin Q.
Doughty VA.
Zhuang L.
McBriar MD.
Kerns JK.
Brook CS.
Murase N.
Nakayama K.
Angew. Chem. Int. Ed.
2001,
40:
196
7d
Smith AB.
Doughty VA.
Sfouggatakis C.
Bennett CS.
Koyanagi J.
Takeuchi M.
Org. Lett.
2002,
4:
783
7e
Smith AB.
Zhu W.
Shirakami S.
Sfouggatakis C.
Doughty VA.
Bennett CS.
Sakamoto Y.
Org. Lett.
2003,
5:
761
8a
Paterson I.
Oballa RM.
Norcross RD.
Tetrahedron Lett.
1996,
37:
8581
8b
Paterson I.
Gibson KR.
Oballa RM.
Tetrahedron Lett.
1996,
37:
8585
8c
Paterson I.
Keown LE.
Tetrahedron Lett.
1997,
38:
5727
8d
Paterson I.
Oballa RM.
Tetrahedron Lett.
1997,
38:
8241
8e
Paterson I.
Wallace DJ.
Gibson KR.
Tetrahedron Lett.
1997,
38:
8911
8f
Paterson I.
Chen DY.-K.
Coster MJ.
Aceña JL.
Bach J.
Gibson KR.
Keown LE.
Oballa RM.
Trieselmann T.
Wallace DJ.
Hodgson AP.
Norcross RD.
Angew. Chem. Int. Ed.
2001,
40:
4055
9a
Crimmins MT.
Washburn DG.
Tetrahedron Lett.
1998,
39:
7487
9b
Crimmins MT.
Katz JD.
McAtee LC.
Tabet EA.
Kirincich SJ.
Org. Lett.
2001,
3:
949
9c
Crimmins MT.
Katz JD.
Org. Lett.
2000,
2:
957
9d
Crimmins MT.
Katz JD.
Washburn DG.
Allwein SP.
McAtee LF.
J. Am. Chem. Soc.
2002,
124:
5661
10a
Hubbs JL.
Heathcock CH.
J. Am. Chem. Soc.
2003,
125:
12836
10b
Heathcock CH.
McLaughlin M.
Medina J.
Hubbs JL.
Wallace GA.
Scott R.
Claffey MM.
Hayes CJ.
Ott GR.
J. Am. Chem. Soc.
2003,
125:
12844
10c
Wallace GA.
Scott RW.
Heathcock CH.
J. Org. Chem.
2000,
65:
4145
10d
Claffey MM.
Hayes CJ.
Heathcock CH.
J. Org. Chem.
1999,
64:
8267
For a comprehensive list of leading references to synthetic approaches from other laboratories, see the references cited in ref.10a and the following:
11a
Zuev D.
Paquette LA.
Org. Lett.
2000,
2:
679
11b
Terauchi T.
Nakata M.
Tetrahedron Lett.
1998,
39:
3795
11c
Lemaire-Audoire S.
Vogel P.
Tetrahedron Lett.
1998,
39:
1345
11d
Lemaire-Audoire S.
Vogel P.
J. Org. Chem.
2000,
65:
3346
11e
Zemribo R.
Mead KT.
Tetrahedron Lett.
1998,
39:
3895
11f
Fernandez-Megia E.
Gourlaouen N.
Ley SV.
Rowlands GJ.
Synlett
1998,
991
11g
Gaunt MJ.
Hook DF.
Tanner HR.
Ley SV.
Org. Lett.
2003,
5:
4815
11h
Gaunt MJ.
Jessiman AS.
Orsini P.
Tanner HR.
Hook DF.
Ley SV.
Org. Lett.
2003,
5:
4819
11i
Micalizio GC.
Pinchuk AN.
Roush WR.
J. Org. Chem.
2000,
65:
8730
11j
Anderson JC.
McDermott BP.
Tetrahedron Lett.
1999,
40:
7135
11k
Samadi M.
Munoz-Letelier C.
Poigny S.
Guyot M.
Tetrahedron Lett.
2000,
41:
3349
11l
Terauchi T.
Terauchi T.
Sato I.
Tsukada T.
Kanoh N.
Nakata M.
Tetrahedron Lett.
2000,
41:
2649
11m
Kary PD.
Roberts SM.
Tetrahedron: Asymmetry
1999,
10:
217
11n
Kim H.
Hoffmann MR.
Eur. J. Org. Chem.
2000,
2195
11o
Barrett AGM.
Braddock DC.
de Koning PD.
White AJP.
Williams DJ.
J. Org. Chem.
2000,
65:
375
11p
Holson EB.
Roush WR.
Org. Lett.
2002,
4:
3719
11q
Holson EB.
Roush WR.
Org. Lett.
2002,
4:
3723
12
Lau CK.
Zakrewski P.
Synlett
2003,
2:
215
13 Physical data of 6: [α]D
25 -16.5 (c 1.79, CHCl3). 1H NMR (500 MHz, acetone-d
6): δ = 7.31 (d, 2 H, J = 8.7 Hz), 6.90 (d, 2 H, J = 8.7 Hz), 4.58 (d, 1 H, J = 11.1 Hz), 4.42 (d, 1 H, J = 11.2 Hz), 4.07-4.01 (m, 1 H), 3.78 (s, 3 H), 3.74-3.66 (m, 2 H), 3.56-3.52 (m, 1 H), 3.41-3.39 (m, 2 H), 1.87-1.81 (m, 1 H), 1.77-1.69 (m, 2 H), 1.65-1.58 (m, 1 H), 0.88 (s, 18 H), 0.08 (s, 6 H), 0.05 (s, 6 H). 13C NMR (100 MHz, acetone-d
6): δ = 170.5, 141.6, 140.4, 124.7, 85.1, 81.3, 77.5, 70.6, 65.7, 53.8, 51.2, 36.5, 28.9, 28.8, 22.3, 6.1, 5.9, 5.1. HRMS: m/z calcd for C26H48O4Si2I: for [M - H] 607.2136. Found: 607.2138.
14 Physical data of 7: [α]D
25 -0.9 (c 4.47, CHCl3). 1H NMR (500 MHz, acetone-d
6): δ = 7.28 (d, 2 H, J = 8.6 Hz), 6.92 (d, 2 H, J = 8.6 Hz), 4.42 (q, 2 H, J = 9.6 Hz), 4.12-4.06 (m, 1 H), 3.94-3.87 (m, 1 H), 3.80 (s, 3 H), 3.58-3.48 (m, 2 H), 3.26 (dd, 1 H, J = 4.8, 10.1 Hz), 3.17 (dd, 1 H, J = 6.4, 10.2 Hz), 1.82-1.74 (m, 1 H), 1.71 (q, 2 H, J = 6.2 Hz), 1.43 (s, 3 H), 1.32 (s, 3 H), 1.10 (q, 1 H, J = 11.8 Hz). 13C NMR (100 MHz, acetone-d
6): δ = 164.3, 136.1, 134.2, 118.7, 103.9, 77.2, 74.1, 70.9, 70.7, 59.8, 41.9, 41.5, 34.6, 24.5, 15.2.
15 Physical data of 25: [α]D
25 -7.3 (c 3.75, CH2Cl2). 1H NMR (500 MHz, acetone-d
6): δ = 7.27 (m, 4 H), 6.91 (m, 4 H), 4.46 (d, 2 H, J = 11.0 Hz), 4.42 (d, 2 H, J = 10.6 Hz), 4.39-4.34 (m, 1 H), 4.08-4.02 (m, 3 H), 3.83 (s, 3 H), 3.81 (s, 3 H), 3.78-3.70 (m, 2 H), 3.55-3.47 (m, 2 H), 2.69-2.61 (m, 2 H), 2.48 (dd, 1 H, J = 5.0, 15.6 Hz), 1.83-1.76 (m, 2 H), 1.68-1.58 (m, 6 H), 1.42 (s, 3 H), 1.27 (s, 3 H), 1.09 (m, 1 H), 0.94 (s, 9 H), 0.91 (s, 9 H), 0.10 (m, 6 H), 0.08 (s, 6 H). 13C NMR (100 MHz, acetone-d
6): δ = 206.91, 159.61, 131.46, 131.43, 129.52, 129.40, 113.92, 113.86, 98.57, 72.80, 72.46, 70.95, 66.89, 66.28, 66.13, 65.99, 59.86, 55.00, 50.38, 48.83, 43.18, 40.52, 37.23, 37.00, 25.86, 19.60, 18.31, 18.10, -4.55, -4.77, -5.56, -5.58. HRMS: m/z calcd for C44H74O9Si2K: for [M + K+] 841.4508. Found: 841.4505.
16 Physical data of 26: [α]D
25 -67.4 (c 6.5, CH2Cl2). 1H NMR (500 MHz, acetone-d
6): δ = 7.36 (d, 2 H, J = 8.5 Hz), 7.17 (d, 2 H, J = 8.5 Hz), 6.92 (d, 2 H, J = 8.6 Hz), 6.88 (d, 2 H, J = 8.6 Hz), 4.61 (d, 1 H, J = 11.1 Hz), 4.43 (d, 1 H, J = 11.1 Hz), 4.27 (d, 1 H, J = 11.4 Hz), 4.16 (d, 1 H, J = 11.4 Hz), 4.13-4.08 (m, 1 H, H3), 4.07-4.03 (m, 1 H, H11), 3.90 (br s, 1 H), 3.79 (s, 3 H), 3.77 (s, 3 H), 3.72-3.68 (m, 1 H), 3.66-3.60 (m, 2 H), 3.54-3.50 (m, 1 H), 2.54 (d, 1 H, J = 14.1 Hz, H8ax), 2.34 (d, 1 H, J = 8.5 Hz, H6ax), 2.29-2.23 (m, 3 H), 1.89 (d, 1 H, J = 13.9 Hz, H4ax), 1.84-1.80 (m, 2 H), 1.62-1.55 (m, 3 H), 1.52-1.46 (m, 1 H, H4eq), 0.89 (s, 9 H), 0.03 (s, 6 H). 13C NMR (150 MHz, acetone-d
6): δ = 204.78, 159.89, 159.35, 132.36, 129.66, 129.24, 128.96, 113.64, 113.63, 99.82, 72.51, 70.88, 69.66, 66.61, 66.15, 62.44, 59.88, 54.89, 54.86, 52.24, 46.94, 38.97, 36.17, 36.13, 35.74, 25.84, 18.20, -5.67. The stereochemistry of AB spiroketal was determined by 2D-COSY and NOESY experiments. NOEs were observed between H6ax and H8ax, H6eq and H8eq as well as H3ax and H11ax which were consistent with the proposed spiroketal junction reported in the literature. HRMS: m/z calcd for C35H52O8SiK: for [M + K+] 667.3069. Found: 667.3066.
17 Physical data of 2a: [α]D
25 -50.0 (c 1.2, CH2Cl2). 1H NMR (500 MHz, acetone-d
6): δ = 7.33 (d, 2 H, J = 8.5 Hz), 7.17 (d, 2 H, J = 8.4 Hz), 6.89 (dd, 4 H, J = 8.6, 11.4 Hz), 4.56 (d, 1 H, J = 11.1 Hz), 4.38 (d, 1 H, J = 11.1 Hz), 4.28 (d, 1 H, J = 11.4 Hz), 4.23-4.15 (m, 3 H), 4.01 (t, 1 H, J = 10.5 Hz), 3.85 (s, 1 H), 3.79 (s, 3 H), 3.76 (s, 3 H), 3.76-3.73 (m, 1 H), 3.71-3.61 (m, 2 H), 3.53-3.47 (m, 1 H), 2.11 (s, 1 H, H6), 1.89 (d, 1 H, J = 12.6 Hz, H4), 1.75-1.65 (m, 5 H), 1.56-1.49 (m, 4 H), 1.29 (t, 1 H, J = 12.3 Hz, H10), 1.10 (s, 3 H, CH3), 0.90 (s, 9 H), 0.06 (s, 6 H). 13C NMR (150 MHz, acetone-d
6): δ = 160.48, 160.44, 132.35, 132.31, 129.14, 129.04, 113.95, 113.91, 98.56, 72.30, 70.90, 69.63, 69.16, 66.85, 62.94, 62.81, 60.41, 54.85, 54.83, 46.45, 44.53, 39.18, 37.00, 36.04, 29.95, 25.79, 18.15, -5.18. The stereochemistry of the axial C9-OH was determined by 2D-COSY and NOESY experiments. NOE was observed between H11ax and C9-OH, CH3 and H8eq as well as CH3 and H10eq. HRMS: m/z calcd for C36H56O8SiK: for [M + K+] 683.3382. Found: 683.3382. Physical data of 2b: [α]D
25
-46.0 (c 0.43, CH2Cl2). 1H NMR (500 MHz, acetone-d
6):
δ = 7.33 (d, 2 H, J = 8.6 Hz), 7.18 (d, 2 H, J = 8.6 Hz),
6.89-6.87 (m, 4 H), 4.56 (d, 1 H, J = 11.1 Hz), 4.36 (d, 1 H, J = 11.1 Hz), 4.29 (d, 1 H, J = 11.5 Hz), 4.18 (d, 1 H, J = 11.5 Hz), 4.11-4.05 (m, 1 H, H3), 3.85-3.81 (m, 2 H), 3.79 (s, 3 H), 3.76 (s, 3 H), 3.73-3.67 (m, 2 H), 3.64-3.58 (m, 1 H), 3.51-3.47 (m, 2 H), 2.10-2.08 (m, 1 H, H6), 1.86-1.82 (m, 1 H, H4), 1.74-1.59 (m, 6 H), 1.53-1.45 (m, 3 H), 1.41 (s, 3 H, CH3), 1.38-1.31 (m, 1 H, H10), 0.90 (s, 9 H), 0.05 (s, 6 H). 13C NMR (150 MHz, acetone-d
6): δ = 159.60, 159.54, 131.60, 131.48, 129.71, 129.65, 114.06, 113.99, 97.71, 72.23, 71.10, 69.63, 67.16, 64.80, 61.92, 60.63, 54.83, 54.82, 49.75, 46.32, 39.71, 37.69, 36.54, 36.12, 29.14, 26.10, 18.16, -5.18. NOEs were observed between H11ax and CH3, H8eq and CH3 as well as H3ax and H11ax which were consistent with the spiroketal structure with the equatorial C9-OH. HRMS: m/z calcd for C36H56O8SiNa: for [M + Na+] 667.3642. Found: 667.3638.
18 Physical data of 12: [α]D
25 -2.53 (c 4.5, CH2Cl2). 1H NMR (500 MHz, acetone-d
6): δ = 4.17-4.11 (m, 1 H), 3.75 (t, 2 H, J = 6.3 Hz), 2.98-2.96 (m, 1 H), 2.72 (t, 1 H, J = 4.6 Hz), 2.44 (dd, 1 H, J = 2.5, 5.2 Hz), 1.77-1.71 (m, 2 H), 1.71-1.61 (m, 2 H), 0.95 (s, 9 H), 0.92 (s, 9 H), 0.14 (m, 6 H), 0.09 (s, 6 H). 13C NMR (100 MHz, acetone-d
6): δ = 67.81, 59.66, 49.26, 46.92, 41.19, 41.03, 25.83, 25.80, 18.28, 18.11,
-4.80, -4.88, -5.62. HRMS: m/z calcd for C18H41O3Si2: for [M + H+] 361.2594. Found: 361.2593.
19 Physical data of 34: [α]D
25 -19.3 (c 0.15, CH2Cl2). 1H NMR (500 MHz, acetone-d
6): δ = 7.28 (d, 2 H, J = 8.5 Hz), 6.92 (d, 2 H, J = 8.5 Hz), 4.43-4.36 (m, 3 H), 4.10-4.05 (m, 2 H), 3.89-3.83 (m, 1 H), 3.80 (s, 3 H), 3.77-3.71 (m, 2 H), 3.56-3.48 (m, 2 H), 3.28 (s, 3 H), 2.82-2.78 (m, 1 H), 2.63 (dd, 1 H, J = 7.5, 15.9 Hz), 2.56-2.46 (m, 2 H), 1.72-1.66 (m, 5 H), 1.62-1.58 (m, 1 H), 1.55-1.49 (m, 1 H), 1.44 (s, 3 H), 1.28 (s, 3 H), 1.13-1.05 (m, 1 H), 0.96 (s, 9 H), 0.92 (s, 9 H), 0.13 (s, 6 H), 0.08 (s, 6 H). 13C NMR (100 MHz, acetone-d
6): δ = 206.62, 159.62, 131.43, 129.39, 113.92, 98.57, 74.04, 72.45, 67.11, 66.29, 66.01, 65.98, 59.67, 55.82, 54.99, 50.23, 48.15, 43.15, 41.48, 37.22, 37.00, 25.90, 25.81, 19.59, 18.27, 18.15, -4.48, -4.71, -5.64. HRMS: m/z calcd for C37H68O8Si2K: for [M + K+] 735.4090. Found: 735.4087.
20 Physical data of 9: [α]D
25 -26.8 (c 0.67, CH2Cl2). 1H NMR (500 MHz, acetone-d
6): δ = 7.31 (d, 2 H, J = 8.5 Hz), 6.91 (d, 2 H, J = 8.5 Hz), 4.59-4.53 (m, 1 H), 4.45 (q, 2 H, J = 10.1 Hz), 4.18 (d, 1 H, J = 5.3 Hz), 4.11 (s, 1 H), 3.94 (t, 1 H, J = 6.3 Hz, OH), 3.85-3.81 (m, 2 H), 3.80 (s, 3 H), 3.59-3.51 (m, 4 H), 3.30 (s, 3 H), 2.37 (d, 1 H, J = 14.6 Hz, H24eq), 2.04-2.00 (m, 2 H), 1.74-1.59 (m, 5 H), 1.53-1.45 (m, 2 H), 1.21 (t, 1 H, J = 11.9 Hz, H22ax), 1.08 (q, 1 H, J = 11.7 Hz, H20ax). 13C NMR (150 MHz, acetone-d
6): δ = 159.20, 131.01, 129.04, 114.01, 99.09, 74.00, 72.51, 67.69, 66.36, 64.04, 62.21, 58.39, 54.91, 54.58, 43.74, 38.92, 38.60, 38.38, 36.52, 34.11. The stereochemistry of CD spiroketal was determined by 2D-COSY and NOESY experiments. NOEs were observed between H19ax and H24eq, H21 and H24eq, H22eq and H24ax as well as H21 and H-19. HRMS: m/z calcd for C22H34O7K: for [M + K+] 449.1942. Found: 449.1940.
21 Physical data of 10: [α]D
25 +0.3 (c 1.7, CH2Cl2). 1H NMR (500 MHz, acetone-d
6): δ = 7.30 (d, 2 H, J = 8.3 Hz), 6.92 (d, 2 H, J = 8.4 Hz), 4.48-4.41 (m, 2 H), 4.20-4.18 (m, 1 H, H25), 4.17-4.11 (m, 1 H, H27), 4.08-4.05 (m, 1 H, H19), 3.80 (s, 3 H), 3.80-3.79 (m, 1 H, OH), 3.69-3.62 (m, 3 H), 3.58-3.50 (m, 2 H), 3.37 (t, 1 H, J = 5.1 Hz, OH), 3.24 (s, 3 H), 2.69 (d, 1 H, J = 10.2 Hz, H22eq), 2.08-2.03 (m, 1 H, H20), 1.84-1.78 (m, 3 H), 1.73-1.58 (m, 5 H), 1.07-0.99 (m, 2 H). 13C NMR (150 MHz, acetone-d
6): δ = 159.23, 130.98, 129.05, 113.52, 98.95, 72.98, 72.10, 66.68, 66.64, 66.51, 62.38, 58.68, 54.60, 54.40, 43.65, 39.96, 39.26, 38.19, 37.62, 35.99. The stereochemistry of CD spiroketal was determined by 2D-COSY and NOESY experiments. NOEs were observed between H19 and H21, H24 and H25, H22 and H24 as well as H22eq and H27ax which was consistent with the spiroketal junction with a chair conformation for the C19-C22 fragment and a boat like conformation for the C24-C27 segment. HRMS: m/z calcd for C22H34O7K: for [M + K+] 449.1942. Found: 449.1940.