Subscribe to RSS
DOI: 10.1055/s-2004-831335
A Chiral Base Desymmetrisation-Ring-Closing Metathesis Route to Chiral Azaspirocycles: Synthesis of Core Structures Related to Pinnaic Acid and Halichlorine
Publication History
Publication Date:
08 September 2004 (online)
Abstract
A range of highly functionalised chiral azaspirocycles was synthesised, starting from a piperidine diester that is available in 90% ee from a chiral base desymmetrisation. The approach depends upon the use of Grignard addition reactions or a Claisen rearrangement to provide intermediates capable of undergoing ring-closing metathesis. A number of intermediates related to the core structure of pinnaic acid were synthesised by concise routes using the approach.
Key words
azaspirocycle - pinnaic acid - ring-closing metathesis
- 1 For leading references to histrionicotoxin, see:
Stockman RA.Sinclair A.Arini LG.Szeto P.Hughes DL. J. Org. Chem. 2004, 69: 1598 -
2a
Chou T.Kuramoto M.Otani Y.Shikano M.Yazawa K.Uemura D. Tetrahedron Lett. 1996, 37: 3871 -
2b
Carson W.Kim G.Hentemann MF.Trauner D.Danishefsky SJ. Angew. Chem. Int. Ed. 2001, 40: 4450 -
2c
Carson MW.Kim G.Hentemann MF.Trauner D.Danishefsky SJ. Angew. Chem. Int. Ed. 2001, 40: 4453 -
3a
Kuramoto M.Tong C.Yamada K.Chiba T.Hayashi Y.Uemura D. Tetrahedron Lett. 1996, 37: 3867 -
3b
Trauner D.Schwartz JB.Danishefsky SJ. Angew. Chem. Int. Ed. 1999, 38: 3542 -
3c
Trauner D.Danishefsky SJ. Tetrahedron Lett. 1999, 40: 6513 -
3d
Trauner D.Churchill DG.Danishefsky SJ. Helv. Chim. Acta 2000, 83: 2344 - 4 For very recent formal syntheses of both (±)-halichlorine and (±)-pinnaic acid, and further references, see:
Matsumura Y.Aoyagi S.Kibayashi C. Org. Lett. 2004, 6: 965 - For varied approaches, see for example:
-
5a
Willand N.Beghyn T.Nowogrocki G.Gesquire J.-C.Deprez B. Tetrahedron Lett. 2004, 45: 1051 -
5b
Canesi S.Belmont P.Bouchu D.Rousset L.Ciufolini MA. Tetrahedron Lett. 2002, 43: 5193 -
5c
Ciblat S.Canet J.-L.Troin Y. Tetrahedron Lett. 2001, 42: 4815 - For methods based on ring closing metathesis, see:
-
6a
Wright DL.Schulte JP.Page MA. Org. Lett. 2000, 2: 1847 -
6b
Suga S.Watanabe M.Yoshida J. J. Am. Chem. Soc. 2002, 124: 14824 -
6c
Nieczypor P.Mol JC.Bespalova NB.Bubnov YN. Eur. J. Org. Chem. 2004, 812 -
6d
Edwards AS.Wybrow RAJ.Johnstone C.Adams H.Harrity JPA. Chem. Commun. 2002, 1542 -
6e
Wybrow RAJ.Stevenson NG.Harrity JPA. Synlett 2004, 140 - 7
Goldspink NJ.Simpkins NS.Beckmann M. Synlett 1999, 1292 - 8 Clive has also recognised the possibility of applying our chiral base reaction to this problem, see:
Yu M.Clive DLJ.Yeh VSC.Kang S.Wang J. Tetrahedron Lett. 2004, 45: 2879 - 10
Langer F.Schwink L.Devasagayaraj A.Chavant P.-Y.Knochel P. J. Org. Chem. 1996, 61: 8229 - For reviews, see:
-
11a
Wipf P.Jahn H. Tetrahedron 1996, 52: 12853 -
11b
Wipf P.Xu W.Smitrovich JH.Lehmann R.Venanzi LM. Tetrahedron 1994, 50: 1935 - 16
Martin Castro AM. Chem. Rev. 2004, 104: 2939
References
In ref.8, Clive reports only a 69% ee was possible in the preparation of 7, whereas we have observed 90-95% ee in several runs. We are presently in communication with Professor Clive in order to resolve this disparity.
12It appears that the basic tertiary amine interferes with the organometallic chemistry; and in the radical reactions we suspected 1,6-hydrogen atom abstraction from the N-CH2Ph group.
13Analysis of allylic alcohol 10, in the form of its 4-nitroben-zoate ester revealed the stereochemistry shown. We thank Dr A. J. Blake of this school for this result, full details of which will be published later.
14Data for ketone 16: [α]D 28 -6.2 (c 1.0 in CHCl3). IR (CDCl3): νmax = 2930 (s), 2858 (s), 1737 (s), 1588 (m), 1453 (m), 1362 (m), 1089 (s) cm-1. 1H NMR (400 MHz, CDCl3): δ = 0.96 (9 H, s, t-Bu), 1.26-1.30 (1 H, m), 1.50-1.54 (3 H, m), 1.67-1.78 (2 H, m), 1.97-2.06 (4 H, m), 2.14 (1 H, m, 2-H), 2.31 (1 H, m, 2-H), 2.61 (1 H, m, 7-H), 2.89 (1 H, dd, J = 9.9, 8.4 Hz, CH2OSi), 3.21 (1 H, d, J = 15.9 Hz, NCH2Ph), 3.33 (1 H, d, J = 15.9 Hz, NCH2Ph), 3.56 (1 H, dd, J = 9.9, 3.8 Hz, CH2OSi), 7.07-7.14 (3 H, m, Ar), 7.23-7.27 (2 H, m, Ar), 7.27-7.35 (4 H, m, Ar), 7.36-7.45 (6 H, m, Ar). 13C NMR (100 MHz, CDCl3): δ = 17.7 (CH2), 19.2 (C), 19.8 (CH2), 25.9 (CH2), 26.9 (CH3), 29.3 (CH2), 31.3 (CH2), 37.2 (CH2), 56.9 (CH2), 62.3 (CH), 67.6 (CH2), 71.6 (C), 126.3 (CH), 127.2 (CH), 127.5 (CH), 127.8 (CH), 129.5 (CH), 129.5 (CH), 133.7 (C), 133.9 (C), 135.5 (CH), 135.6 (CH), 142.0 (C), 220.0 (C=O). HRMS (APCI): m/z calcd for C33H42NO2Si [M + H]: 512.2985; found: 512.2999.
15The Claisen rearrangement gave a mixture of intermediates, assigned as 19/22 in a ca. 1:4 ratio. So far we have been able to isolate only the metathesis product derived from the major component. Data for ester 24: [α]D 27 -4.2 (c 1.0 in CHCl3). IR (CDCl3): νmax = 2957 (s), 2930 (s), 2858 (s), 1726 (s), 1588 (w), 1427 (m) cm-1. 1H NMR (500 MHz, CDCl3): δ = 0.96 (9 H, s, t-BuSi), 1.17 (3 H, t, J = 7.3 Hz, Me), 1.45-1.69 (5 H, m), 1.97 (1 H, br d, J = 13.0 Hz), 2.13 (1 H, dd, J = 14.9, 10.7 Hz, CH2CO2), 2.25 (1 H, dd, J = 17.2, 2.3 Hz, 4-H), 2.54 (1 H, d, J = 17.2 Hz, 4-H), 2.58-2.63 (2 H, m, 7-H and CH2CO2), 3.05 (1 H, m, 1-H), 3.07 (1 H, dd, J = 9.9, 7.6 Hz, CH2OSi), 3.30 (1 H, d, J = 17.4 Hz, NCH2Ph), 3.55 (1 H, dd, J = 9.9, 3.8 Hz, CH2OSi), 3.85 (1 H, d, J = 17.4 Hz, NCH2Ph), 4.05 (2 H, m, OCH2Me), 5.56 (1 H, br dd, J = 6.1, 1.9 Hz, 2-H), 5.71 (1 H, br dd, J = 6.1, 2.3 Hz, 3-H), 7.10 (1 H, m, Ar), 7.14-7.19 (4 H, m, Ar), 7.28-7.31 (4 H, m, Ar), 7.36-7.40 (2 H, m, Ar), 7.42-7.45 (4 H, m, Ar). 13C NMR (125 MHz, CDCl3): δ = 14.2 (CH3), 19.2 (C), 20.2 (CH2), 27.0 (CH3), 29.9 (CH2), 33.1 (CH2), 35.7 (CH2), 37.6 (CH2), 49.8 (CH), 53.9 (CH2), 60.3 (CH2), 63.6 (CH), 68.1 (CH2), 68.7 (C), 125.9 (CH), 126.8 (CH), 127.6 (CH), 127.9 (CH), 129.5 (CH), 132.8 (CH), 133.8 (C), 133.9 (C), 135.5 (CH), 135.6 (CH), 143.2 (C), 173.4 (C=O). HRMS (APCI): m/z calcd for C37H48NO3Si [M + H]: 582.3403; found: 582.3398.
17This assignment is based on gradient NOE enhancements seen between the methine at C-1 of the cyclopentene (C*) and the methylene of the N-Bn group. By contrast no such enhancement to the methylene of the CH2CO2Et substituent was seen.