References
1 For leading references to histrionicotoxin, see: Stockman RA.
Sinclair A.
Arini LG.
Szeto P.
Hughes DL.
J. Org. Chem.
2004,
69:
1598
2a
Chou T.
Kuramoto M.
Otani Y.
Shikano M.
Yazawa K.
Uemura D.
Tetrahedron Lett.
1996,
37:
3871
2b
Carson W.
Kim G.
Hentemann MF.
Trauner D.
Danishefsky SJ.
Angew. Chem. Int. Ed.
2001,
40:
4450
2c
Carson MW.
Kim G.
Hentemann MF.
Trauner D.
Danishefsky SJ.
Angew. Chem. Int. Ed.
2001,
40:
4453
3a
Kuramoto M.
Tong C.
Yamada K.
Chiba T.
Hayashi Y.
Uemura D.
Tetrahedron Lett.
1996,
37:
3867
3b
Trauner D.
Schwartz JB.
Danishefsky SJ.
Angew. Chem. Int. Ed.
1999,
38:
3542
3c
Trauner D.
Danishefsky SJ.
Tetrahedron Lett.
1999,
40:
6513
3d
Trauner D.
Churchill DG.
Danishefsky SJ.
Helv. Chim. Acta
2000,
83:
2344
4 For very recent formal syntheses of both (±)-halichlorine and (±)-pinnaic acid, and further references, see: Matsumura Y.
Aoyagi S.
Kibayashi C.
Org. Lett.
2004,
6:
965
For varied approaches, see for example:
5a
Willand N.
Beghyn T.
Nowogrocki G.
Gesquire J.-C.
Deprez B.
Tetrahedron Lett.
2004,
45:
1051
5b
Canesi S.
Belmont P.
Bouchu D.
Rousset L.
Ciufolini MA.
Tetrahedron Lett.
2002,
43:
5193
5c
Ciblat S.
Canet J.-L.
Troin Y.
Tetrahedron Lett.
2001,
42:
4815
For methods based on ring closing metathesis, see:
6a
Wright DL.
Schulte JP.
Page MA.
Org. Lett.
2000,
2:
1847
6b
Suga S.
Watanabe M.
Yoshida J.
J. Am. Chem. Soc.
2002,
124:
14824
6c
Nieczypor P.
Mol JC.
Bespalova NB.
Bubnov YN.
Eur. J. Org. Chem.
2004,
812
6d
Edwards AS.
Wybrow RAJ.
Johnstone C.
Adams H.
Harrity JPA.
Chem. Commun.
2002,
1542
6e
Wybrow RAJ.
Stevenson NG.
Harrity JPA.
Synlett
2004,
140
7
Goldspink NJ.
Simpkins NS.
Beckmann M.
Synlett
1999,
1292
8 Clive has also recognised the possibility of applying our chiral base reaction to this problem, see: Yu M.
Clive DLJ.
Yeh VSC.
Kang S.
Wang J.
Tetrahedron Lett.
2004,
45:
2879
9 In ref.8, Clive reports only a 69% ee was possible in the preparation of 7, whereas we have observed 90-95% ee in several runs. We are presently in communication with Professor Clive in order to resolve this disparity.
10
Langer F.
Schwink L.
Devasagayaraj A.
Chavant P.-Y.
Knochel P.
J. Org. Chem.
1996,
61:
8229
For reviews, see:
11a
Wipf P.
Jahn H.
Tetrahedron
1996,
52:
12853
11b
Wipf P.
Xu W.
Smitrovich JH.
Lehmann R.
Venanzi LM.
Tetrahedron
1994,
50:
1935
12 It appears that the basic tertiary amine interferes with the organometallic chemistry; and in the radical reactions we suspected 1,6-hydrogen atom abstraction from the N-CH2Ph group.
13 Analysis of allylic alcohol 10, in the form of its 4-nitroben-zoate ester revealed the stereochemistry shown. We thank Dr A. J. Blake of this school for this result, full details of which will be published later.
14 Data for ketone 16: [α]D
28 -6.2 (c 1.0 in CHCl3). IR (CDCl3): νmax = 2930 (s), 2858 (s), 1737 (s), 1588 (m), 1453 (m), 1362 (m), 1089 (s) cm-1. 1H NMR (400 MHz, CDCl3): δ = 0.96 (9 H, s, t-Bu), 1.26-1.30 (1 H, m), 1.50-1.54 (3 H, m), 1.67-1.78 (2 H, m), 1.97-2.06 (4 H, m), 2.14 (1 H, m, 2-H), 2.31 (1 H, m, 2-H), 2.61 (1 H, m, 7-H), 2.89 (1 H, dd, J = 9.9, 8.4 Hz, CH2OSi), 3.21 (1 H, d, J = 15.9 Hz, NCH2Ph), 3.33 (1 H, d, J = 15.9 Hz, NCH2Ph), 3.56 (1 H, dd, J = 9.9, 3.8 Hz, CH2OSi), 7.07-7.14 (3 H, m, Ar), 7.23-7.27 (2 H, m, Ar), 7.27-7.35 (4 H, m, Ar), 7.36-7.45 (6 H, m, Ar). 13C NMR (100 MHz, CDCl3): δ = 17.7 (CH2), 19.2 (C), 19.8 (CH2), 25.9 (CH2), 26.9 (CH3), 29.3 (CH2), 31.3 (CH2), 37.2 (CH2), 56.9 (CH2), 62.3 (CH), 67.6 (CH2), 71.6 (C), 126.3 (CH), 127.2 (CH), 127.5 (CH), 127.8 (CH), 129.5 (CH), 129.5 (CH), 133.7 (C), 133.9 (C), 135.5 (CH), 135.6 (CH), 142.0 (C), 220.0 (C=O). HRMS (APCI): m/z calcd for C33H42NO2Si [M + H]: 512.2985; found: 512.2999.
15 The Claisen rearrangement gave a mixture of intermediates, assigned as 19/22 in a ca. 1:4 ratio. So far we have been able to isolate only the metathesis product derived from the major component. Data for ester 24: [α]D
27 -4.2 (c 1.0 in CHCl3). IR (CDCl3): νmax = 2957 (s), 2930 (s), 2858 (s), 1726 (s), 1588 (w), 1427 (m) cm-1. 1H NMR (500 MHz, CDCl3): δ = 0.96 (9 H, s, t-BuSi), 1.17 (3 H, t, J = 7.3 Hz, Me), 1.45-1.69 (5 H, m), 1.97 (1 H, br d, J = 13.0 Hz), 2.13 (1 H, dd, J = 14.9, 10.7 Hz, CH2CO2), 2.25 (1 H, dd, J = 17.2, 2.3 Hz, 4-H), 2.54 (1 H, d, J = 17.2 Hz, 4-H), 2.58-2.63 (2 H, m, 7-H and CH2CO2), 3.05 (1 H, m, 1-H), 3.07 (1 H, dd, J = 9.9, 7.6 Hz, CH2OSi), 3.30 (1 H, d, J = 17.4 Hz, NCH2Ph), 3.55 (1 H, dd, J = 9.9, 3.8 Hz, CH2OSi), 3.85 (1 H, d, J = 17.4 Hz, NCH2Ph), 4.05 (2 H, m, OCH2Me), 5.56 (1 H, br dd, J = 6.1, 1.9 Hz, 2-H), 5.71 (1 H, br dd, J = 6.1, 2.3 Hz, 3-H), 7.10 (1 H, m, Ar), 7.14-7.19 (4 H, m, Ar), 7.28-7.31 (4 H, m, Ar), 7.36-7.40 (2 H, m, Ar), 7.42-7.45 (4 H, m, Ar). 13C NMR (125 MHz, CDCl3): δ = 14.2 (CH3), 19.2 (C), 20.2 (CH2), 27.0 (CH3), 29.9 (CH2), 33.1 (CH2), 35.7 (CH2), 37.6 (CH2), 49.8 (CH), 53.9 (CH2), 60.3 (CH2), 63.6 (CH), 68.1 (CH2), 68.7 (C), 125.9 (CH), 126.8 (CH), 127.6 (CH), 127.9 (CH), 129.5 (CH), 132.8 (CH), 133.8 (C), 133.9 (C), 135.5 (CH), 135.6 (CH), 143.2 (C), 173.4 (C=O). HRMS (APCI): m/z calcd for C37H48NO3Si [M + H]: 582.3403; found: 582.3398.
16
Martin Castro AM.
Chem. Rev.
2004,
104:
2939
17 This assignment is based on gradient NOE enhancements seen between the methine at C-1 of the cyclopentene (C*) and the methylene of the N-Bn group. By contrast no such enhancement to the methylene of the CH2CO2Et substituent was seen.