Inhibin, activin, and follistatin were first identified as gonadal hormones that could
exert selective effects on follicle-stimulating hormone (FSH) secretion without affecting
luteinizing hormone (LH). Although the primary source of inhibin remains the gonad,
both activin and follistatin are produced in extragonadal tissues and can exert effects
on FSH through an autocrine-paracrine mechanism. These proteins can effect the regulation
of the gonadotropins at many levels. First, activin can directly stimulate FSH biosynthesis
and release from the gonadotrope cells of the pituitary gland. Second, activin up-regulates
gonadotropin-releasing hormone receptor (GnRHR) gene expression, leading to alterations
in the synthesis and release of both gonadotropins in response to GnRH. Third, activin
can stimulate GnRH release from GnRH neurons in the hypothalamus and thereby affect
FSH and LH secretion. Both inhibin and follistatin can negatively regulate these effects
by preventing activin binding to the activin receptor at the cell membrane and blocking
activation of downstream signal transduction pathways. This review concentrates on
the mechanisms through which inhibin, activin, and follistatin regulate the gonadotropins.
We discuss the expression of inhibin/activin subunits and receptors throughout the
hypothalamus and pituitary and their role in the regulation of FSH and LH. The mechanisms
of inhibin and activin signaling are also reported, with particular attention to developments
in our understanding of inhibin receptor action and activin-induced transcriptional
regulation of the FSHβ gene promoter. Finally, we present recent findings that other
members of the transforming growth factor β superfamily may also play an important
role in transcriptional regulation of the pituitary gonadotropins.
KEYWORDS
Inhibin - activin - follistatin - gonadotropins - LH - FSH - review
REFERENCES
- 1
Mottram J C, Cramer W.
On the general effects of exposure to radium on metabolism and tumour growth in the
rat and the special effects on the testis and pituitary.
Q J Exp Physiol Cogn Med Sci.
1923;
13
209-229
- 2
Ling N, Ying S Y, Ueno N, Esch F, Denoray L, Guillemin R.
Isolation and partial characterization of a Mw 32,000 protein with inhibin activity
from porcine follicular fluid.
Proc Natl Acad Sci USA.
1985;
82
7217-7221
- 3
Robertson D M, Hayward S, Irby D C et al..
Isolation of inhibin from bovine follicular fluid.
Biochem Biophys Res Commun.
1985;
126
220-226
- 4
Rivier J, Spiess J, McClintock R, Vaughan J, Vale W.
Purification and partial characterization of inhibin from porcine follicular fluid.
Biochem Biophys Res Commun.
1985;
133
120-127
- 5
Mason A J, Hayflick J S, Ling N et al..
Complementary DNA sequences of ovarian follicular fluid inhibin show precursor structure
and homology with transforming growth factor-beta.
Nature.
1985;
318
659-663
- 6
De Jong F H.
Inhibin.
Physiol Rev.
1988;
68
555-607
- 7
Corrigan A Z, Bilezikjian L M, Carroll R S et al..
Evidence for an autocrine role of activin B within rat anterior pituitary cultures.
Endocrinology.
1991;
128
1682-1684
- 8
Ling N, Ying S Y, Ueno N et al..
Pituitary FSH is released by a heterodimer of the beta-subunits from the two forms
of inhibin.
Nature.
1986;
321
779-782
- 9
Vale W, Rivier J, Vaughan J et al..
Purification and characterization of an FSH releasing protein from porcine ovarian
follicular fluid.
Nature.
1986;
321
776-779
- 10
Hotten G, Neidhardt H, Schneider C, Pohl J.
Cloning of a new member of the TGF-β family: a putative new activin βC chain.
Biochem Biophys Res Commun.
1995;
206
608-613
- 11
Oda S, Nishimatsu S-I, Murakami K, Ueno N.
Molecular cloning and functional analysis of a new activin βB subunit: a dorsal mesoderm-inducing activity in Xenopus
.
Biochem Biophys Res Commun.
1995;
210
581-588
- 12
Fang J, Yin W, Smiley E, Wang S Q, Bonadio J.
Molecular cloning of mouse activin βE subunit gene.
Biochem Biophys Res Commun.
1996;
228
669-674
- 13
Pangas S A, Woodruff T K.
Production and purification of recombinant human inhibin and activin.
J Endocrinol.
2002;
172
199-210
- 14
Mason A J, Berkemeier L M, Schmelzer C H, Schwall R H.
Activin B: precursor sequences, genomic structure and in vitro activities.
Mol Endocrinol.
1989;
3
1352-1358
- 15
Ueno N, Ling N, Ying S-Y, Esch F, Shimasaki S.
Isolation and partial characterization of follistatin: a single-chain Mr 35,000 monomeric
protein that inhibits the release of follicle-stimulating hormone.
Proc Natl Acad Sci USA.
1987;
84
8282-8286
- 16
Robertson D M, Klein R, de Vos F L et al..
The isolation of polypeptides with FSH suppressing activity from bovine follicular
fluid which are structurally different to inhibin.
Biochem Biophys Res Commun.
1987;
149
744-749
- 17
Ying S Y, Becker A, Swanson G et al..
Follistatin specifically inhibits pituitary follicle stimulating hormone release in vitro
.
Biochem Biophys Res Commun.
1987;
149
133-139
- 18
Nakamura T, Takio K, Eto Y, Shibai H, Titani K, Sugino H.
Activin-binding protein from rat ovary is follistatin.
Science.
1990;
247
836-838
- 19
Kogawa K, Nakamura T, Sugino K, Takio K, Titani K, Sugino H.
Activin-binding protein is present in pituitary.
Endocrinology.
1991;
128
1434-1440
- 20
Robertson D M, Hayward S, Irby D C et al..
Radioimmunoassay of rat serum inhibin: changes after PMSG-stimulation and gonadectomy.
Mol Cell Endocrinol.
1988;
58
1-8
- 21
Ishida H, Tashioro H, Watanabe M et al..
Measurement of inhibin concentrations in men: study of changes after castration and
comparison with androgen levels in testicular tissue, spermatic vein blood and peripheral
venous blood.
J Clin Endocrinol Metab.
1990;
70
1019-1022
- 22
Sakai R, Shiozaki M, Tabuchi M, Eto Y.
The measurement of activin/EDF in mouse serum: evidence for extragonadal production.
Biochem Biophys Res Commun.
1992;
188
921-926
- 23
McFarlane J R, Foulds L M, Pisciotta A, Robertson D M, de Kretser D M.
Measurement of activin in biological fluids by radioimmunoassay, utilizing dissociating
agents to remove the interference of follistatin.
Eur J Endocrinol.
1996;
134
481-489
- 24
Welt C, Sidis Y, Keutmann H, Schneyer A.
Activins, inhibins, and follistatins: from endocrinology to signaling: a paradigm
for the new millennium.
Exp Biol Med (Maywood).
2002;
227
724-752
- 25
Carroll R S, Corrigan A Z, Gharib S D, Vale W, Chin W W.
Inhibin, activin, and follistatin: regulation of follicle-stimulating hormone messenger
ribonucleic acid levels.
Mol Endocrinol.
1989;
3
1969-1976
- 26
Attardi B, Miklos J.
Rapid stimulatory effect of activin-A on messenger RNA encoding the follicle-stimulating
hormone beta-subunit in rat pituitary cell cultures.
Mol Endocrinol.
1990;
4
721-726
- 27
Weiss J, Harris P E, Halvorson L M, Crowley Jr W F, Jameson J L.
Dynamic regulation of follicle-stimulating hormone-beta messenger ribonucleic acid
levels by activin and gonadotropin-releasing hormone in perifused rat pituitary cells.
Endocrinology.
1992;
131
1403-1408
- 28
Weiss J, Crowley Jr W F, Halvorson L M, Jameson J L.
Perifusion of rat pituitary cells with gonadotropin-releasing hormone, activin, and
inhibin reveals distinct effects on gonadotropin gene expression and secretion.
Endocrinology.
1993;
132
2307-2311
- 29
Weiss J, Guendner M J, Halvorson L M, Jameson J L.
Transcriptional activation of the follicle-stimulating hormone beta-subunit gene by
activin.
Endocrinology.
1995;
136
1885-1891
- 30
Carroll R S, Kowash P M, Lofgren J A, Schwall R H, Chin W W.
In vivo regulation of FSH synthesis by inhibin and activin.
Endocrinology.
1991;
129
3299-3304
- 31
Carroll R S, Corrigan A Z, Vale W, Chin W W.
Activin stabilizes follicle-stimulating hormone-beta messenger ribonucleic acid levels.
Endocrinology.
1991;
129
1721-1726
- 32
Attardi B, Winters S J.
Decay of follicle-stimulating hormone-beta messenger RNA in the presence of transcriptional
inhibitors and/or inhibin, activin, or follistatin.
Mol Endocrinol.
1993;
7
668-680
- 33
Roberts V, Meunier H, Vaughan J et al..
Production and regulation of inhibin subunits in pituitary gonadotropes.
Endocrinology.
1989;
124
552-554
- 34
Fernandez-Vazquez G, Kaiser U B, Albarracin C T, Chin W W.
Transcriptional activation of the gonadotropin-releasing hormone receptor gene by
activin A.
Mol Endocrinol.
1996;
10
356-366
- 35
Roberts V J, Peto C A, Vale W, Sawchenko P O.
Inhibin/activin are costored with FSH and LH in secretory granules of the rat anterior
pituitary gland.
Neuroendocrinology.
1992;
56
214-224
- 36
Wilson M E, Handa R J.
Activin subunit, follistatin, and activin receptor gene expression in the prepubertal
female rat pituitary.
Biol Reprod.
1998;
59
278-283
- 37
Dalkin A C, Haislender D J, Gilrain J T, Aylor K, Yasin M, Marshall J C.
Regulation of pituitary follistatin and inhibin/activin subunit messenger ribonucleic
acids (mRNAs) in male and female rats: evidence for inhibin regulation of follistatin
mRNA in females.
Endocrinology.
1998;
139
2818-2823
- 38
Attardi B, Marshall G R, Zorub D S, Winters S J, Miklos J, Plant T M.
Effects of orchidectomy on gonadotropin and inhibin subunit messenger ribonucleic
acids in the pituitary of the rhesus monkey (Macaca mulatta).
Endocrinology.
1992;
130
1238-1244
- 39
Winters S J, Kawakami S, Sahu A, Plant T M.
Pituitary follistatin and activin gene expression, and the testicular regulation of
FSH in the adult rhesus monkey (Macaca mulatta).
Endocrinology.
2001;
142
2874-2878
- 40
Haddad G, Penabad J L, Bashley H M, Asa S L, Gennarelli T A, Cirullo P J.
Expression of activin/inhibin subunit messenger ribonucleic acid in gonadotroph adenomas.
J Clin Endocrinol Metab.
1994;
79
1399-1403
- 41
Kogawa K, Ogawa K, Hayashi Y, Nakamura T, Titani K, Sugino H.
Immunohistochemical localization of follistatin in rat tissues.
Endocrinol Jpn.
1991;
38
383-391
- 42
Kaiser U B, Lee B L, Carroll R S, Unabia G, Chin W W, Childs G V.
Follistatin gene expression in the pituitary: localization in gonadotropes and folliculostellate
cells in diestrous rats.
Endocrinology.
1992;
130
3048-3056
- 43
Lan-Lee B, Unabia G, Childs G.
Expression of follistatin mRNA by somatotropes and mammotropes early in the rat estrous
cycle.
J Histochem Cytochem.
1993;
41
955-960
- 44
Bilezikjian L M, Vaughan J M, Vale W W.
Characterization and the regulation of inhibin/activin subunit proteins of cultured
rat anterior pituitary cells.
Endocrinology.
1993;
133
2545-2553
- 45
Bilezikjian L M, Corrigan A Z, Vaughan J M, Vale W M.
Activin-A regulates follistatin secretion from cultured rat anterior pituitary cells.
Endocrinology.
1993;
133
2554-2560
- 46
Mathews L S, Vale W W.
Expression of an activin receptor, a predicted transmembrane serine kinase.
Cell.
1991;
65
973-982
- 47
Attisano L, Wrana J L, Cheifetz S, Massague J.
Novel activin receptors: distinct genes and alternative mRNA splicing generates a
repertoire of serine/threonine kinase receptors.
Cell.
1992;
68
97-108
- 48
Mathews L S, Vale W W, Kintner C R.
Cloning of a second type of activin receptor and functional characterization in Xenopus embryos.
Science.
1992;
255
1702-1705
- 49
Attisano L, Carcamo J, Ventura F, Weis F M, Massague J, Wrana J L.
Identification of human activin and TGF beta type I receptors that form heteromeric
kinase complexes with type II receptors.
Cell.
1993;
75
671-680
- 50
Ebner R, Chen R H, Lawler S, Zioncheck T, Derynck R.
Determination of type I receptor specificity by the type II receptors for TGF-beta
or activin.
Science.
1993;
262
900-902
- 51
Tsuchida K, Mathews L S, Vale W W.
Cloning and characterization of a transmembrane serine kinase that acts as an activin
type I receptor.
Proc Natl Acad Sci USA.
1993;
90
11242-11246
- 52
Carcamo J, Weis F M, Ventura F et al..
Type I receptors specify growth-inhibitory and transcriptional responses to transforming
growth factor beta and activin.
Mol Cell Biol.
1994;
14
3810-3821
- 53
Ten Dijke P, Yamashita H, Ichijo H et al..
Characterization of type I receptors for transforming growth factor-beta and activin.
Science.
1994;
264
101-104
- 54
Mathews L S.
Activin receptors and cellular signaling by the receptor serine kinase family.
Endocr Rev.
1994;
15
310-325
- 55
Fischer W H, Park M, Donaldson C et al..
Residues in the C-terminal of activin A determine specificity for follistatin and
type II receptor binding.
J Endocrinol.
2003;
176
61-68
- 56
Ventura F, Doody J, Liu F, Wrana J L, Massague J.
Reconstitution and transphosphorylation of TGF-beta receptor complexes.
EMBO J.
1994;
13
5581-5589
- 57
Massague J, Chen Y-G.
Controlling TGF-β signaling.
Genes Dev.
2000;
14
627-644
- 58
Derynck R, Zhang Y E.
Smad-dependent and Smad-independent pathways in TGF-β family signalling.
Nature.
2003;
425
577-584
- 59
Cameron V A, Nishimura E, Mathews L S, Lewis K A, Sawchenko P E, Vale W W.
Hybridization histochemical localization of activin receptor subtypes in rat brain,
pituitary, ovary, and testis.
Endocrinology.
1994;
134
799-808
- 60
Dalkin A C, Haisenleder D J, Yasin M, Gilrain J T, Marshall J C.
Pituitary activin receptor subtype and follistatin gene expression in female rats
differential regulation by activin and follistatin.
Endocrinology.
1996;
137
548-554
- 61
Pernasetti F, Vasilyev V V, Rosenberg S B et al..
Cell-specific transcriptional regulation of follicle-stimulating hormone-beta by activin
and gonadotropin-releasing hormone in the LbetaT2 pituitary gonadotrope cell model.
Endocrinology.
2001;
142
2284-2295
- 62
Dupont J, McNeilly J, Vaiman A, Canepa S, Combarnous Y, Taragnat C.
Activin signaling pathways in ovine pituitary and LbetaT2 gonadotrope cells.
Biol Reprod.
2003;
68
1877-1887
- 63
Lewis K A, Gray P C, Blount A L et al..
Betaglycan binds inhibin and can mediate functional antagonism of activin signalling.
Nature.
2000;
404
411-414
- 64
Alarid E T, Windle W W, Whyte D B, Mellon P L.
Immortalization of pituitary cells at discrete stages of development by directed oncogenesis
in transgenic mice.
Development.
1996;
122
3319-3329
- 65
Turgeon J L, Kimura Y, Waring D W, Mellon P L.
Steroid and pulsatile gonadotropin-releasing hormone (GnRH) regulation of luteinizing
hormone and GnRH receptor in a novel gonadotrope cell line.
Mol Endocrinol.
1996;
10
439-450
- 66
LeBrun J J, Vale W W.
Activin and inhibin have antagonistic effects on ligand-dependent heteromerization
of the type I and II activin receptors and human erythroid differentiation.
Mol Cell Biol.
1997;
17
1682-1691
- 67
Martens J W, de Winter J P, Timmerman M A et al..
Inhibin interferes with activin signaling at the level of the activin receptor complex
in Chinese hamster ovary cells.
Endocrinology.
1997;
138
2928-2936
- 68
Xu J, McKeehan K, Matsuzaki K, McKeehan W L.
Inhibin antagonizes inhibition of liver cell growth by activin by a dominant-negative
mechanism.
J Biol Chem.
1995;
270
6308-6313
- 69
Schwall R H, Robbins K, Jardieu P, Chang L, Lai C, Terrell T G.
Activin induces cell death in hepatocytes in vivo and in vitro
.
Hepatology.
1993;
18
347-356
- 70
Hertan R, Farnworth P G, Fitzsimmons K L, Robertson D M.
Identification of high affinity binding sites for inhibin on ovine pituitary cells
in culture.
Endocrinology.
1999;
140
6-12
- 71
Chong H, Pangas S A, Bernard D J et al..
Structure and expression of a membrane component of the inhibin receptor system.
Endocrinology.
2000;
141
2600-2607
- 72
MacConell L A, Leal A MO, Vale W W.
The distribution of betaglycan protein and mRNA in rat brain, pituitary, and gonads:
implications for a role for betaglycan in inhibin-mediated reproductive functions.
Endocrinology.
2002;
143
1066-1075
- 73
Bernard D J, Woodruff T K.
Inhibin binding protein in rats: alternative transcripts and regulation in the pituitary
across the estrous cylce.
Mol Endocrinol.
2001;
15
654-667
- 74
Chapman S C, Woodruff T K.
Modulation of activin signal transduction by inhibin B and inhibin-binding protein
(InhBP).
Mol Endocrinol.
2001;
15
668-679
- 75
Chapman S C, Bernard D J, Jelen J, Woodruff T K.
Properties of inhibin binding to betaglycan, InhBP/p120 and the activin type II receptors.
Mol Cell Endocrinol.
2002;
196
79-93
- 76
Bernard D J, Burns K H, Haupt B, Matzuk M M, Woodruff T K.
Normal reproductive function in InhBP/p120-deficient mice.
Mol Cell Biol.
2003;
23
4882-4891
- 77
Lagna G, Hata A, Hemmati-Brivanlou A, Massague J.
Partnership between DPC4 and SMAD proteins in TGF-beta signaling pathways.
Nature.
1996;
383
832-836
- 78
Liu F, Pouponnot C, Massague J.
Dual role of Smad4/DPC4 tumor suppressor in TGFbeta-inducible transcriptional complexes.
Genes Dev.
1997;
11
3157-3167
- 79
Hata A, Lo R, Wotton D, Lagna M, Massague J.
Mutations increasing autoinhibition inactivate the tumour suppressors Smad2 and Smad4.
Nature.
1997;
388
82-86
- 80
Wu R-Y, Zhang Y, Feng X-H, Derynck R.
Heteromeric and homomeric interactions correlate with signaling activity and functional
cooperativity of Smad3 and Smad4/DPC4.
Mol Cell Biol.
1997;
17
2521-2528
- 81
Derynck R, Zhang Y, Feng X-H.
Smads: transcriptional activators of TGF-β responses.
Cell.
1998;
95
737-740
- 82
Zawel L, Dai J L, Buckhaults P et al..
Human SMAD3 and SMAD4 are sequence-specific transcription activators.
Mol Cell.
1998;
1
611-617
- 83
Shi Y, Wang Y-F, Jayaraman L, Yang H, Massague J, Pavletich N P.
Crystal structure of Smad MH1 domain bound to DNA: insights on DNA-binding in TGF-β
signaling.
Cell.
1998;
94
585-594
- 84
Massague J, Wotton D.
Transcriptional control by the TGF-β/Smad signaling system.
EMBO J.
2000;
19
1745-1754
- 85
Kim J, Johnson K, Chen H J, Carroll S, Laughon A.
Drosophila Mad binds to DNA and directly mediates activation of vestigial by Decapentaplegic.
Nature.
1997;
388
304-308
- 86
Moustakas A, Souchelnytskyi S, Heldin C-H.
Smad regulation in TGF-β signal transduction.
J Cell Sci.
2001;
114
4359-4369
- 87
Dennler S, Itoh S, Vivien D, ten Dijke P, Huet S, Gauthier J-M.
Direct binding of Smad3 and Smad4 to critical TGFβ-inducible elements in the promoter
of human plasminogen activator inhibitor-type 1 gene.
EMBO J.
1998;
17
3091-3100
- 88
Yagi K, Goto D, Hamamoto T, Takenoshita S, Kato M, Miyazono K.
Alternatively spliced variant of Smad2 lacking exon 3.
J Biol Chem.
1999;
274
703-709
- 89
Chen X, Weisberg E, Fridmacher V, Watanabe M, Naco G, Whitman M.
Smad4 and Fast-1 in the assembly of activin-responsive factor.
Nature.
1997;
389
85-89
- 90
Labbe E, Silvestri C, Hoodless P A, Wrana J L, Attisano L.
SMAD2 and SMAD3 positively and negatively regulate TGFβ-dependent transcription through
the forkhead DNA-binding protein FAST2.
Mol Cell.
1998;
2
109-120
- 91
Miyazawa K, Shinozaki M, Hara T, Furuya T, Miyazono K.
Two major Smad pathways in TGF-β superfamily signalling.
Genes Cells.
2002;
7
1191-1204
- 92
Graham K E, Nusser K D, Low M J.
LßT2 gonadotrope cells secrete follicle stimulating hormone (FSH) in response to activin
A.
J Endocrinol.
1999;
162
R1-R5
- 93
Suszko M I, Lo D J, Suh H, Camper S A, Woodruff S.
Regulation of the rat follicle stimulating hormone β-subunit promoter by activin.
Mol Endocrinol.
2003;
17
318-332
- 94
Norwitz E R, Xu S, Spiryda L B et al..
Direct binding of AP-1 (Fos/Jun) proteins to a SMAD binding element facilitates both
gonadotropin-releasing hormone (GnRH)- and activin-mediated transcriptional activation
of the mouse GnRH receptor gene.
J Biol Chem.
2002;
277
37469-37478
- 95
Bernard D J.
Both SMAD2 and SMAD3 mediate activin-stimulated expression of the FSHβ subunit in
mouse gonadotrope cells.
Mol Endocrinol.
2004;
18
606-623
- 96
Bilezikjian L M, Corrigan A Z, Blount A L, Chen Y, Vale W W.
Regulation and actions of Smad7 in the modulation of activin, inhibin, and transforming
growth factor-beta signaling in anterior pituitary cells.
Endocrinology.
2001;
142
1065-1072
- 97
Yeo C Y, Chen X, Whitman M.
The role of FAST-1 and Smads in transcriptional regulation by activin during early
Xenopus embryogenesis.
J Biol Chem.
1999;
274
26584-26590
- 98
Zhang Y, Feng X H, Derynck R.
SMAD3 and SMAD4 cooperate with c-Jun/c-Fos to mediate TGF-β-induced transcription.
Nature.
1998;
394
909-913
- 99
Qing J, Zhang Y, Derynck R.
Structural and functional characterization of the transforming growth factor-β-induced
Smad3/c-Jun transcriptional cooperativity.
J Biol Chem.
2000;
275
38802-38812
- 100
Attisano L, Wrana J L.
Smads as transcriptional co-modulators.
Curr Opin Cell Biol.
2000;
12
235-243
- 101
Bailey J S, Rave-Harel N, McGillivray S M, Coss D, Mellon P L.
Activin regulation of the follicle-stimulating hormone β-subunit gene involves Smads
and the TALE homeodomain proteins Pbx1 and Prep1.
Mol Endocrinol.
2004;
18
1158-1170
- 102
Huang H-J, Sebastian J, Strahl B D, Wu J C, Miller W L.
Transcriptional regulation of the ovine follicle-stimulating hormone-β gene by activin
and gonadotropin-releasing hormone (GnRH): involvement of two proximal activator protein-1
sites for GnRH stimulation.
Endocrinology.
2001;
142
2267-2274
- 103
Gajewska A, Siawrys G, Bogacka I et al..
In vivo modulation of follicle-stimulating hormone release and β subunit gene expression
by activin A and the GnRH agonist buserelin in female rats.
Brain Res Bull.
2002;
58
475-480
- 104
Coss D, Jacobs S B, Bender C E, Mellon P.
A novel AP-1 site is critical for maximal induction of the FSHβ gene by GnRH.
J Biol Chem.
2004;
279
152-162
- 105
Esch F S, Shimasaki S, Mercado M et al..
Structural characterization of follistatin: a novel follicle-stimulating hormone release-inhibiting
polypeptide from the gonad.
Mol Endocrinol.
1987;
1
849-855
- 106
Keutmann H T, Schneyer A L, Sidis Y.
The role of follistatin domains in follistatin biological action.
Mol Endocrinol.
2004;
18
228-240
- 107
Gharib S D, Wierman M E, Shupnik M A, Chin W W.
Gonadotrophin-releasing hormone: its actions and receptors.
Endocr Rev.
1990;
11
177-199
- 108
Sealfon S C, Weinstein H, Millar R P.
Molecular mechanisms of ligand interaction with the gonadotropin-releasing hormone
receptor.
Endocr Rev.
1997;
18
180-205
- 109
Shacham S, Harris D, Ben-Shlomo H et al..
Mechanism of GnRH receptor signaling on gonadotropin release and gene expression in
pituitary gonadotrophs.
Vitam Horm.
2001;
63
63-90
- 110
Kaiser U B, Jakubowiak A, Steinberger A, Chin W W.
Regulation of rat pituitary gonadotropin-releasing hormone receptor mRNA levels in
vivo and in vitro.
Endocrinology.
1993;
133
931-934
- 111
Kaiser U B, Sabbagh E, Katzenellenbogen R A, Conn P M, Chin W W.
A mechanism for the differential regulation of gonadotropin subunit gene expression
by gonadotropin-releasing hormone.
Proc Natl Acad Sci USA.
1995;
92
12280-12284
- 112
Kaiser U B, Jakubowiak A, Steinberger A, Chin W W.
Differential effects of gonadotropin-releasing hormone (GnRH) pulse frequency on gonadotropin
subunit and GnRH receptor messenger ribonucleic acid levels in vitro.
Endocrinology.
1997;
138
1224-1231
- 113
Bedecarrats G Y, Kaiser U B.
Differential regulation of gonadotropin subunit gene promoter activity by pulsatile
gonadotropin-releasing hormone (GnRH) in perifused LßT2 cells: role of GnRH receptor
concentration.
Endocrinology.
2003;
144
1802-1811
- 114
Braden T D, Conn P M.
Activin-A stimulates the synthesis of gonadotropin-releasing hormone receptors.
Endocrinology.
1992;
130
2101-2105
- 115
Norwitz E R, Xu S, Jeong K-H et al..
Activin A augments GnRH-mediated transcriptional activation of the mouse GnRH receptor
gene.
Endocrinology.
2002;
143
985-997
- 116
Norwitz E R, Cardona G R, Jeong K H, Chin W W.
Identification and characterization of the gonadotropin-releasing hormone response
element in the mouse gonadotropin-releasing hormone receptor gene.
J Biol Chem.
1999;
274
867-880
- 117
Duval D L, Ellsworth B S, Clay C M.
Is gonadotrope expression of the gonadotropin releasing hormone receptor gene mediated
by autocrine/paracrine stimulation of an activin response element.
Endocrinology.
1999;
140
1949-1952
- 118
Ellsworth B S, Burns A T, Escudero K W, Duval D L, Nelson S E, Clay C M.
The gonadotropin releasing hormone (GnRH) receptor activating sequence (GRAS) is a
composite regulatory element that interacts with multiple classes of transcription
factors including SMADS, AP-1 and a forkhead DNA binding protein.
Mol Cell Endocrinol.
2003;
206
93-111
- 119
Sheth P R, Dandekar S P, Seethalakshmi N, Sheth A R.
Inhibin interaction with LHRH receptors at the pituitary level.
Arch Androl.
1982;
8
185-188
- 120
Wang Q F, Farnworth P G, Findlay J K, Burger H G.
Effect of purified 31 kDa bovine inhibin on the specific binding of GnRH to rat anterior
pituitary cells in culture.
Endocrinology.
1988;
123
2161-2166
- 121
Winters S J, Pohl C R, Adedoyin A, Marshall G R.
Effects of continuous inhibin administration on gonadotropin secretion and subunit
gene expression in immature and adult male rats.
Biol Reprod.
1996;
55
1377-1382
- 122
Wang Q F, Farnworth P G, Findlay J K, Burger H G.
Inhibitory effect of pure 31-kilodalton bovine inhibin on gonadotropin-releasing hormone
(GNRH)-induced up-regulation of GnRH binding sites in cultured rat anterior pituitary
cells.
Endocrinology.
1989;
124
363-368
- 123
Braden T D, Farnworth P G, Burger H G, Conn P M.
Regulation of the synthetic rate of gonadotropin-releasing hormone receptors in rat
pituitary cell cultures by inhibin.
Endocrinology.
1990;
127
2387-2392
- 124
Sealfon S C, Laws S C, Wu J C, Gillo B, Miller W L.
Hormonal regulation of gonadotropin-releasing hormone receptors and messenger RNA
activity in ovine pituitary culture.
Mol Endocrinol.
1990;
4
1980-1987
- 125
Gregg D W, Schwall R H, Nett T M.
Regulation of gonadotropin secretion and number of gonadotropin-releasing hormone
receptors by inhibin, activin-A, and estradiol.
Biol Reprod.
1991;
44
725-732
- 126
Ghosh B R, Wu J C, Strahl B D, Childs G V, Miller W L.
Inhibin and estradiol alter gonadotropes differentially in ovine pituitary cultures:
changing gonadotrope numbers and calcium responses to gonadotropin-releasing hormone.
Endocrinology.
1996;
137
5144-5154
- 127
Duval D L, Farris A R, Quirk C C, Nett T M, Hamernik D L, Clay C M.
Responsiveness of the ovine gonadotropin-releasing hormone receptor gene to estradiol
and gonadotropin-releasing hormone is not detectable in vitro but is revealed in transgenic mice.
Endocrinology.
2000;
141
1001-1010
- 128
Roberts V J, Barth S L, Meunier H, Vale W.
Hybridization histochemical and immunohistochemical localization of inhibin/activin
subunits and messenger ribonucleic acids in the rat brain.
J Comp Neurol.
1996;
364
473-493
- 129
MacConell L A, Widger A E, Barth-Hall S, Roberts V J.
Expression of activin and follistatin in the rat hypothalamus: anatomical association
with gonadotropin-releasing hormone neurons and possible role of central activin in
the regulation of luteinizing hormone release.
Endocrine.
1998;
9
233-241
- 130
Florio P, Vannelli G B, Luisi S et al..
Human GnRH-secreting cultured neurons express activin betaA subunit mRNA and secrete
dimeric activin A.
Eur J Endocrinol.
2000;
143
133-138
- 131
MacConell L A, Lawson M A, Mellon P L, Roberts V J.
Activin A regulation of gonadotropin-releasing hormone synthesis and release in vitro.
Neuroendocrinology.
1999;
70
246-254
- 132
Calogero A E, Burrello N, Ossino A M, Polosa P, D’Agata R.
Activin-A stimulates hypothalamic gonadotropin-releasing hormone release by the explanted
male rat hypothalamus: interaction with inhibin and androgens.
J Endocrinol.
1998;
156
269-274
- 133
Fujimura H, Ohsawa K, Funaba M et al..
Immunological localization and ontogenic development of inhibin alpha subunit in rat
brain.
J Neuroendocrinol.
1999;
11
157-163
- 134
Kumar T R, Agno J, Janovick J A, Conn P M, Matzuk M M.
Regulation of FSHβ and GnRH receptor gene expression in activin receptor II knockout
male mice.
Mol Cell Endocrinol.
2003;
212
19-27
- 135
Huang H J, Wu J C, Su P, Zhirnov O, Miller W L.
A novel role for bone morphogenetic proteins in the synthesis of follicle-stimulating
hormone.
Endocrinology.
2001;
142
2275-2283
- 136
Otsuka F, Shimasaki S.
A novel function of bone morphogenetic protein-15 in the pituitary: selective synthesis
and secretion of FSH by gonadotropes.
Endocrinology.
2002;
143
4938-4941
- 137
Wiater E, Vale W.
Inhibin is an antagonist of bone morphogenetic protein signaling.
J Biol Chem.
2003;
278
7934-7941
- 138
Otsuka F, Moore R K, Iemura S, Ueno N, Shimasaki S.
Follistatin inhibits the function of the oocyte-derived factor BMP-15.
Biochem Biophys Res Commun.
2001;
289
961-966
- 139
Bedecarrats G Y, O’Neill F H, Norwitz E R, Kaiser U B, Teixera J.
Regulation of gonadotropin gene expression by mullerian inhibiting substance.
Proc Natl Acad Sci USA.
2003;
100
9348-9353
- 140
Ethier J F, Farnworth P G, Findlay J K, Ooi G T.
Transforming growth factor-beta modulates inhibin A bioactivity in the LbetaT2 gonadotrope
cell line by competing for binding to betaglycan.
Mol Endocrinol.
2002;
16
2754-2763
Ursula B KaiserM.D
Division of Endocrinology, Diabetes, and Hypertension, Brigham and Women’s Hospital
and Harvard Medical School
221 Longwood Avenue, Boston, MA 02115