Semin Reprod Med 2004; 22(3): 253-267
DOI: 10.1055/s-2004-831901
Copyright © 2004 by Thieme Medical Publishers, Inc., 333 Seventh Avenue, New York, NY 10001, USA.

Regulation of Gonadotropins by Inhibin and Activin

Susan J. Gregory1 , Ursula B. Kaiser1
  • 1Division of Endocrinology, Diabetes, and Hypertension, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts
Further Information

Publication History

Publication Date:
20 August 2004 (online)

Inhibin, activin, and follistatin were first identified as gonadal hormones that could exert selective effects on follicle-stimulating hormone (FSH) secretion without affecting luteinizing hormone (LH). Although the primary source of inhibin remains the gonad, both activin and follistatin are produced in extragonadal tissues and can exert effects on FSH through an autocrine-paracrine mechanism. These proteins can effect the regulation of the gonadotropins at many levels. First, activin can directly stimulate FSH biosynthesis and release from the gonadotrope cells of the pituitary gland. Second, activin up-regulates gonadotropin-releasing hormone receptor (GnRHR) gene expression, leading to alterations in the synthesis and release of both gonadotropins in response to GnRH. Third, activin can stimulate GnRH release from GnRH neurons in the hypothalamus and thereby affect FSH and LH secretion. Both inhibin and follistatin can negatively regulate these effects by preventing activin binding to the activin receptor at the cell membrane and blocking activation of downstream signal transduction pathways. This review concentrates on the mechanisms through which inhibin, activin, and follistatin regulate the gonadotropins. We discuss the expression of inhibin/activin subunits and receptors throughout the hypothalamus and pituitary and their role in the regulation of FSH and LH. The mechanisms of inhibin and activin signaling are also reported, with particular attention to developments in our understanding of inhibin receptor action and activin-induced transcriptional regulation of the FSHβ gene promoter. Finally, we present recent findings that other members of the transforming growth factor β superfamily may also play an important role in transcriptional regulation of the pituitary gonadotropins.

REFERENCES

  • 1 Mottram J C, Cramer W. On the general effects of exposure to radium on metabolism and tumour growth in the rat and the special effects on the testis and pituitary.  Q J Exp Physiol Cogn Med Sci. 1923;  13 209-229
  • 2 Ling N, Ying S Y, Ueno N, Esch F, Denoray L, Guillemin R. Isolation and partial characterization of a Mw 32,000 protein with inhibin activity from porcine follicular fluid.  Proc Natl Acad Sci USA. 1985;  82 7217-7221
  • 3 Robertson D M, Hayward S, Irby D C et al.. Isolation of inhibin from bovine follicular fluid.  Biochem Biophys Res Commun. 1985;  126 220-226
  • 4 Rivier J, Spiess J, McClintock R, Vaughan J, Vale W. Purification and partial characterization of inhibin from porcine follicular fluid.  Biochem Biophys Res Commun. 1985;  133 120-127
  • 5 Mason A J, Hayflick J S, Ling N et al.. Complementary DNA sequences of ovarian follicular fluid inhibin show precursor structure and homology with transforming growth factor-beta.  Nature. 1985;  318 659-663
  • 6 De Jong F H. Inhibin.  Physiol Rev. 1988;  68 555-607
  • 7 Corrigan A Z, Bilezikjian L M, Carroll R S et al.. Evidence for an autocrine role of activin B within rat anterior pituitary cultures.  Endocrinology. 1991;  128 1682-1684
  • 8 Ling N, Ying S Y, Ueno N et al.. Pituitary FSH is released by a heterodimer of the beta-subunits from the two forms of inhibin.  Nature. 1986;  321 779-782
  • 9 Vale W, Rivier J, Vaughan J et al.. Purification and characterization of an FSH releasing protein from porcine ovarian follicular fluid.  Nature. 1986;  321 776-779
  • 10 Hotten G, Neidhardt H, Schneider C, Pohl J. Cloning of a new member of the TGF-β family: a putative new activin βC chain.  Biochem Biophys Res Commun. 1995;  206 608-613
  • 11 Oda S, Nishimatsu S-I, Murakami K, Ueno N. Molecular cloning and functional analysis of a new activin βB subunit: a dorsal mesoderm-inducing activity in Xenopus .  Biochem Biophys Res Commun. 1995;  210 581-588
  • 12 Fang J, Yin W, Smiley E, Wang S Q, Bonadio J. Molecular cloning of mouse activin βE subunit gene.  Biochem Biophys Res Commun. 1996;  228 669-674
  • 13 Pangas S A, Woodruff T K. Production and purification of recombinant human inhibin and activin.  J Endocrinol. 2002;  172 199-210
  • 14 Mason A J, Berkemeier L M, Schmelzer C H, Schwall R H. Activin B: precursor sequences, genomic structure and in vitro activities.  Mol Endocrinol. 1989;  3 1352-1358
  • 15 Ueno N, Ling N, Ying S-Y, Esch F, Shimasaki S. Isolation and partial characterization of follistatin: a single-chain Mr 35,000 monomeric protein that inhibits the release of follicle-stimulating hormone.  Proc Natl Acad Sci USA. 1987;  84 8282-8286
  • 16 Robertson D M, Klein R, de Vos F L et al.. The isolation of polypeptides with FSH suppressing activity from bovine follicular fluid which are structurally different to inhibin.  Biochem Biophys Res Commun. 1987;  149 744-749
  • 17 Ying S Y, Becker A, Swanson G et al.. Follistatin specifically inhibits pituitary follicle stimulating hormone release in vitro .  Biochem Biophys Res Commun. 1987;  149 133-139
  • 18 Nakamura T, Takio K, Eto Y, Shibai H, Titani K, Sugino H. Activin-binding protein from rat ovary is follistatin.  Science. 1990;  247 836-838
  • 19 Kogawa K, Nakamura T, Sugino K, Takio K, Titani K, Sugino H. Activin-binding protein is present in pituitary.  Endocrinology. 1991;  128 1434-1440
  • 20 Robertson D M, Hayward S, Irby D C et al.. Radioimmunoassay of rat serum inhibin: changes after PMSG-stimulation and gonadectomy.  Mol Cell Endocrinol. 1988;  58 1-8
  • 21 Ishida H, Tashioro H, Watanabe M et al.. Measurement of inhibin concentrations in men: study of changes after castration and comparison with androgen levels in testicular tissue, spermatic vein blood and peripheral venous blood.  J Clin Endocrinol Metab. 1990;  70 1019-1022
  • 22 Sakai R, Shiozaki M, Tabuchi M, Eto Y. The measurement of activin/EDF in mouse serum: evidence for extragonadal production.  Biochem Biophys Res Commun. 1992;  188 921-926
  • 23 McFarlane J R, Foulds L M, Pisciotta A, Robertson D M, de Kretser D M. Measurement of activin in biological fluids by radioimmunoassay, utilizing dissociating agents to remove the interference of follistatin.  Eur J Endocrinol. 1996;  134 481-489
  • 24 Welt C, Sidis Y, Keutmann H, Schneyer A. Activins, inhibins, and follistatins: from endocrinology to signaling: a paradigm for the new millennium.  Exp Biol Med (Maywood). 2002;  227 724-752
  • 25 Carroll R S, Corrigan A Z, Gharib S D, Vale W, Chin W W. Inhibin, activin, and follistatin: regulation of follicle-stimulating hormone messenger ribonucleic acid levels.  Mol Endocrinol. 1989;  3 1969-1976
  • 26 Attardi B, Miklos J. Rapid stimulatory effect of activin-A on messenger RNA encoding the follicle-stimulating hormone beta-subunit in rat pituitary cell cultures.  Mol Endocrinol. 1990;  4 721-726
  • 27 Weiss J, Harris P E, Halvorson L M, Crowley Jr W F, Jameson J L. Dynamic regulation of follicle-stimulating hormone-beta messenger ribonucleic acid levels by activin and gonadotropin-releasing hormone in perifused rat pituitary cells.  Endocrinology. 1992;  131 1403-1408
  • 28 Weiss J, Crowley Jr W F, Halvorson L M, Jameson J L. Perifusion of rat pituitary cells with gonadotropin-releasing hormone, activin, and inhibin reveals distinct effects on gonadotropin gene expression and secretion.  Endocrinology. 1993;  132 2307-2311
  • 29 Weiss J, Guendner M J, Halvorson L M, Jameson J L. Transcriptional activation of the follicle-stimulating hormone beta-subunit gene by activin.  Endocrinology. 1995;  136 1885-1891
  • 30 Carroll R S, Kowash P M, Lofgren J A, Schwall R H, Chin W W. In vivo regulation of FSH synthesis by inhibin and activin.  Endocrinology. 1991;  129 3299-3304
  • 31 Carroll R S, Corrigan A Z, Vale W, Chin W W. Activin stabilizes follicle-stimulating hormone-beta messenger ribonucleic acid levels.  Endocrinology. 1991;  129 1721-1726
  • 32 Attardi B, Winters S J. Decay of follicle-stimulating hormone-beta messenger RNA in the presence of transcriptional inhibitors and/or inhibin, activin, or follistatin.  Mol Endocrinol. 1993;  7 668-680
  • 33 Roberts V, Meunier H, Vaughan J et al.. Production and regulation of inhibin subunits in pituitary gonadotropes.  Endocrinology. 1989;  124 552-554
  • 34 Fernandez-Vazquez G, Kaiser U B, Albarracin C T, Chin W W. Transcriptional activation of the gonadotropin-releasing hormone receptor gene by activin A.  Mol Endocrinol. 1996;  10 356-366
  • 35 Roberts V J, Peto C A, Vale W, Sawchenko P O. Inhibin/activin are costored with FSH and LH in secretory granules of the rat anterior pituitary gland.  Neuroendocrinology. 1992;  56 214-224
  • 36 Wilson M E, Handa R J. Activin subunit, follistatin, and activin receptor gene expression in the prepubertal female rat pituitary.  Biol Reprod. 1998;  59 278-283
  • 37 Dalkin A C, Haislender D J, Gilrain J T, Aylor K, Yasin M, Marshall J C. Regulation of pituitary follistatin and inhibin/activin subunit messenger ribonucleic acids (mRNAs) in male and female rats: evidence for inhibin regulation of follistatin mRNA in females.  Endocrinology. 1998;  139 2818-2823
  • 38 Attardi B, Marshall G R, Zorub D S, Winters S J, Miklos J, Plant T M. Effects of orchidectomy on gonadotropin and inhibin subunit messenger ribonucleic acids in the pituitary of the rhesus monkey (Macaca mulatta).  Endocrinology. 1992;  130 1238-1244
  • 39 Winters S J, Kawakami S, Sahu A, Plant T M. Pituitary follistatin and activin gene expression, and the testicular regulation of FSH in the adult rhesus monkey (Macaca mulatta).  Endocrinology. 2001;  142 2874-2878
  • 40 Haddad G, Penabad J L, Bashley H M, Asa S L, Gennarelli T A, Cirullo P J. Expression of activin/inhibin subunit messenger ribonucleic acid in gonadotroph adenomas.  J Clin Endocrinol Metab. 1994;  79 1399-1403
  • 41 Kogawa K, Ogawa K, Hayashi Y, Nakamura T, Titani K, Sugino H. Immunohistochemical localization of follistatin in rat tissues.  Endocrinol Jpn. 1991;  38 383-391
  • 42 Kaiser U B, Lee B L, Carroll R S, Unabia G, Chin W W, Childs G V. Follistatin gene expression in the pituitary: localization in gonadotropes and folliculostellate cells in diestrous rats.  Endocrinology. 1992;  130 3048-3056
  • 43 Lan-Lee B, Unabia G, Childs G. Expression of follistatin mRNA by somatotropes and mammotropes early in the rat estrous cycle.  J Histochem Cytochem. 1993;  41 955-960
  • 44 Bilezikjian L M, Vaughan J M, Vale W W. Characterization and the regulation of inhibin/activin subunit proteins of cultured rat anterior pituitary cells.  Endocrinology. 1993;  133 2545-2553
  • 45 Bilezikjian L M, Corrigan A Z, Vaughan J M, Vale W M. Activin-A regulates follistatin secretion from cultured rat anterior pituitary cells.  Endocrinology. 1993;  133 2554-2560
  • 46 Mathews L S, Vale W W. Expression of an activin receptor, a predicted transmembrane serine kinase.  Cell. 1991;  65 973-982
  • 47 Attisano L, Wrana J L, Cheifetz S, Massague J. Novel activin receptors: distinct genes and alternative mRNA splicing generates a repertoire of serine/threonine kinase receptors.  Cell. 1992;  68 97-108
  • 48 Mathews L S, Vale W W, Kintner C R. Cloning of a second type of activin receptor and functional characterization in Xenopus embryos.  Science. 1992;  255 1702-1705
  • 49 Attisano L, Carcamo J, Ventura F, Weis F M, Massague J, Wrana J L. Identification of human activin and TGF beta type I receptors that form heteromeric kinase complexes with type II receptors.  Cell. 1993;  75 671-680
  • 50 Ebner R, Chen R H, Lawler S, Zioncheck T, Derynck R. Determination of type I receptor specificity by the type II receptors for TGF-beta or activin.  Science. 1993;  262 900-902
  • 51 Tsuchida K, Mathews L S, Vale W W. Cloning and characterization of a transmembrane serine kinase that acts as an activin type I receptor.  Proc Natl Acad Sci USA. 1993;  90 11242-11246
  • 52 Carcamo J, Weis F M, Ventura F et al.. Type I receptors specify growth-inhibitory and transcriptional responses to transforming growth factor beta and activin.  Mol Cell Biol. 1994;  14 3810-3821
  • 53 Ten Dijke P, Yamashita H, Ichijo H et al.. Characterization of type I receptors for transforming growth factor-beta and activin.  Science. 1994;  264 101-104
  • 54 Mathews L S. Activin receptors and cellular signaling by the receptor serine kinase family.  Endocr Rev. 1994;  15 310-325
  • 55 Fischer W H, Park M, Donaldson C et al.. Residues in the C-terminal of activin A determine specificity for follistatin and type II receptor binding.  J Endocrinol. 2003;  176 61-68
  • 56 Ventura F, Doody J, Liu F, Wrana J L, Massague J. Reconstitution and transphosphorylation of TGF-beta receptor complexes.  EMBO J. 1994;  13 5581-5589
  • 57 Massague J, Chen Y-G. Controlling TGF-β signaling.  Genes Dev. 2000;  14 627-644
  • 58 Derynck R, Zhang Y E. Smad-dependent and Smad-independent pathways in TGF-β family signalling.  Nature. 2003;  425 577-584
  • 59 Cameron V A, Nishimura E, Mathews L S, Lewis K A, Sawchenko P E, Vale W W. Hybridization histochemical localization of activin receptor subtypes in rat brain, pituitary, ovary, and testis.  Endocrinology. 1994;  134 799-808
  • 60 Dalkin A C, Haisenleder D J, Yasin M, Gilrain J T, Marshall J C. Pituitary activin receptor subtype and follistatin gene expression in female rats differential regulation by activin and follistatin.  Endocrinology. 1996;  137 548-554
  • 61 Pernasetti F, Vasilyev V V, Rosenberg S B et al.. Cell-specific transcriptional regulation of follicle-stimulating hormone-beta by activin and gonadotropin-releasing hormone in the LbetaT2 pituitary gonadotrope cell model.  Endocrinology. 2001;  142 2284-2295
  • 62 Dupont J, McNeilly J, Vaiman A, Canepa S, Combarnous Y, Taragnat C. Activin signaling pathways in ovine pituitary and LbetaT2 gonadotrope cells.  Biol Reprod. 2003;  68 1877-1887
  • 63 Lewis K A, Gray P C, Blount A L et al.. Betaglycan binds inhibin and can mediate functional antagonism of activin signalling.  Nature. 2000;  404 411-414
  • 64 Alarid E T, Windle W W, Whyte D B, Mellon P L. Immortalization of pituitary cells at discrete stages of development by directed oncogenesis in transgenic mice.  Development. 1996;  122 3319-3329
  • 65 Turgeon J L, Kimura Y, Waring D W, Mellon P L. Steroid and pulsatile gonadotropin-releasing hormone (GnRH) regulation of luteinizing hormone and GnRH receptor in a novel gonadotrope cell line.  Mol Endocrinol. 1996;  10 439-450
  • 66 LeBrun J J, Vale W W. Activin and inhibin have antagonistic effects on ligand-dependent heteromerization of the type I and II activin receptors and human erythroid differentiation.  Mol Cell Biol. 1997;  17 1682-1691
  • 67 Martens J W, de Winter J P, Timmerman M A et al.. Inhibin interferes with activin signaling at the level of the activin receptor complex in Chinese hamster ovary cells.  Endocrinology. 1997;  138 2928-2936
  • 68 Xu J, McKeehan K, Matsuzaki K, McKeehan W L. Inhibin antagonizes inhibition of liver cell growth by activin by a dominant-negative mechanism.  J Biol Chem. 1995;  270 6308-6313
  • 69 Schwall R H, Robbins K, Jardieu P, Chang L, Lai C, Terrell T G. Activin induces cell death in hepatocytes in vivo and in vitro .  Hepatology. 1993;  18 347-356
  • 70 Hertan R, Farnworth P G, Fitzsimmons K L, Robertson D M. Identification of high affinity binding sites for inhibin on ovine pituitary cells in culture.  Endocrinology. 1999;  140 6-12
  • 71 Chong H, Pangas S A, Bernard D J et al.. Structure and expression of a membrane component of the inhibin receptor system.  Endocrinology. 2000;  141 2600-2607
  • 72 MacConell L A, Leal A MO, Vale W W. The distribution of betaglycan protein and mRNA in rat brain, pituitary, and gonads: implications for a role for betaglycan in inhibin-mediated reproductive functions.  Endocrinology. 2002;  143 1066-1075
  • 73 Bernard D J, Woodruff T K. Inhibin binding protein in rats: alternative transcripts and regulation in the pituitary across the estrous cylce.  Mol Endocrinol. 2001;  15 654-667
  • 74 Chapman S C, Woodruff T K. Modulation of activin signal transduction by inhibin B and inhibin-binding protein (InhBP).  Mol Endocrinol. 2001;  15 668-679
  • 75 Chapman S C, Bernard D J, Jelen J, Woodruff T K. Properties of inhibin binding to betaglycan, InhBP/p120 and the activin type II receptors.  Mol Cell Endocrinol. 2002;  196 79-93
  • 76 Bernard D J, Burns K H, Haupt B, Matzuk M M, Woodruff T K. Normal reproductive function in InhBP/p120-deficient mice.  Mol Cell Biol. 2003;  23 4882-4891
  • 77 Lagna G, Hata A, Hemmati-Brivanlou A, Massague J. Partnership between DPC4 and SMAD proteins in TGF-beta signaling pathways.  Nature. 1996;  383 832-836
  • 78 Liu F, Pouponnot C, Massague J. Dual role of Smad4/DPC4 tumor suppressor in TGFbeta-inducible transcriptional complexes.  Genes Dev. 1997;  11 3157-3167
  • 79 Hata A, Lo R, Wotton D, Lagna M, Massague J. Mutations increasing autoinhibition inactivate the tumour suppressors Smad2 and Smad4.  Nature. 1997;  388 82-86
  • 80 Wu R-Y, Zhang Y, Feng X-H, Derynck R. Heteromeric and homomeric interactions correlate with signaling activity and functional cooperativity of Smad3 and Smad4/DPC4.  Mol Cell Biol. 1997;  17 2521-2528
  • 81 Derynck R, Zhang Y, Feng X-H. Smads: transcriptional activators of TGF-β responses.  Cell. 1998;  95 737-740
  • 82 Zawel L, Dai J L, Buckhaults P et al.. Human SMAD3 and SMAD4 are sequence-specific transcription activators.  Mol Cell. 1998;  1 611-617
  • 83 Shi Y, Wang Y-F, Jayaraman L, Yang H, Massague J, Pavletich N P. Crystal structure of Smad MH1 domain bound to DNA: insights on DNA-binding in TGF-β signaling.  Cell. 1998;  94 585-594
  • 84 Massague J, Wotton D. Transcriptional control by the TGF-β/Smad signaling system.  EMBO J. 2000;  19 1745-1754
  • 85 Kim J, Johnson K, Chen H J, Carroll S, Laughon A. Drosophila Mad binds to DNA and directly mediates activation of vestigial by Decapentaplegic.  Nature. 1997;  388 304-308
  • 86 Moustakas A, Souchelnytskyi S, Heldin C-H. Smad regulation in TGF-β signal transduction.  J Cell Sci. 2001;  114 4359-4369
  • 87 Dennler S, Itoh S, Vivien D, ten Dijke P, Huet S, Gauthier J-M. Direct binding of Smad3 and Smad4 to critical TGFβ-inducible elements in the promoter of human plasminogen activator inhibitor-type 1 gene.  EMBO J. 1998;  17 3091-3100
  • 88 Yagi K, Goto D, Hamamoto T, Takenoshita S, Kato M, Miyazono K. Alternatively spliced variant of Smad2 lacking exon 3.  J Biol Chem. 1999;  274 703-709
  • 89 Chen X, Weisberg E, Fridmacher V, Watanabe M, Naco G, Whitman M. Smad4 and Fast-1 in the assembly of activin-responsive factor.  Nature. 1997;  389 85-89
  • 90 Labbe E, Silvestri C, Hoodless P A, Wrana J L, Attisano L. SMAD2 and SMAD3 positively and negatively regulate TGFβ-dependent transcription through the forkhead DNA-binding protein FAST2.  Mol Cell. 1998;  2 109-120
  • 91 Miyazawa K, Shinozaki M, Hara T, Furuya T, Miyazono K. Two major Smad pathways in TGF-β superfamily signalling.  Genes Cells. 2002;  7 1191-1204
  • 92 Graham K E, Nusser K D, Low M J. LßT2 gonadotrope cells secrete follicle stimulating hormone (FSH) in response to activin A.  J Endocrinol. 1999;  162 R1-R5
  • 93 Suszko M I, Lo D J, Suh H, Camper S A, Woodruff S. Regulation of the rat follicle stimulating hormone β-subunit promoter by activin.  Mol Endocrinol. 2003;  17 318-332
  • 94 Norwitz E R, Xu S, Spiryda L B et al.. Direct binding of AP-1 (Fos/Jun) proteins to a SMAD binding element facilitates both gonadotropin-releasing hormone (GnRH)- and activin-mediated transcriptional activation of the mouse GnRH receptor gene.  J Biol Chem. 2002;  277 37469-37478
  • 95 Bernard D J. Both SMAD2 and SMAD3 mediate activin-stimulated expression of the FSHβ subunit in mouse gonadotrope cells.  Mol Endocrinol. 2004;  18 606-623
  • 96 Bilezikjian L M, Corrigan A Z, Blount A L, Chen Y, Vale W W. Regulation and actions of Smad7 in the modulation of activin, inhibin, and transforming growth factor-beta signaling in anterior pituitary cells.  Endocrinology. 2001;  142 1065-1072
  • 97 Yeo C Y, Chen X, Whitman M. The role of FAST-1 and Smads in transcriptional regulation by activin during early Xenopus embryogenesis.  J Biol Chem. 1999;  274 26584-26590
  • 98 Zhang Y, Feng X H, Derynck R. SMAD3 and SMAD4 cooperate with c-Jun/c-Fos to mediate TGF-β-induced transcription.  Nature. 1998;  394 909-913
  • 99 Qing J, Zhang Y, Derynck R. Structural and functional characterization of the transforming growth factor-β-induced Smad3/c-Jun transcriptional cooperativity.  J Biol Chem. 2000;  275 38802-38812
  • 100 Attisano L, Wrana J L. Smads as transcriptional co-modulators.  Curr Opin Cell Biol. 2000;  12 235-243
  • 101 Bailey J S, Rave-Harel N, McGillivray S M, Coss D, Mellon P L. Activin regulation of the follicle-stimulating hormone β-subunit gene involves Smads and the TALE homeodomain proteins Pbx1 and Prep1.  Mol Endocrinol. 2004;  18 1158-1170
  • 102 Huang H-J, Sebastian J, Strahl B D, Wu J C, Miller W L. Transcriptional regulation of the ovine follicle-stimulating hormone-β gene by activin and gonadotropin-releasing hormone (GnRH): involvement of two proximal activator protein-1 sites for GnRH stimulation.  Endocrinology. 2001;  142 2267-2274
  • 103 Gajewska A, Siawrys G, Bogacka I et al.. In vivo modulation of follicle-stimulating hormone release and β subunit gene expression by activin A and the GnRH agonist buserelin in female rats.  Brain Res Bull. 2002;  58 475-480
  • 104 Coss D, Jacobs S B, Bender C E, Mellon P. A novel AP-1 site is critical for maximal induction of the FSHβ gene by GnRH.  J Biol Chem. 2004;  279 152-162
  • 105 Esch F S, Shimasaki S, Mercado M et al.. Structural characterization of follistatin: a novel follicle-stimulating hormone release-inhibiting polypeptide from the gonad.  Mol Endocrinol. 1987;  1 849-855
  • 106 Keutmann H T, Schneyer A L, Sidis Y. The role of follistatin domains in follistatin biological action.  Mol Endocrinol. 2004;  18 228-240
  • 107 Gharib S D, Wierman M E, Shupnik M A, Chin W W. Gonadotrophin-releasing hormone: its actions and receptors.  Endocr Rev. 1990;  11 177-199
  • 108 Sealfon S C, Weinstein H, Millar R P. Molecular mechanisms of ligand interaction with the gonadotropin-releasing hormone receptor.  Endocr Rev. 1997;  18 180-205
  • 109 Shacham S, Harris D, Ben-Shlomo H et al.. Mechanism of GnRH receptor signaling on gonadotropin release and gene expression in pituitary gonadotrophs.  Vitam Horm. 2001;  63 63-90
  • 110 Kaiser U B, Jakubowiak A, Steinberger A, Chin W W. Regulation of rat pituitary gonadotropin-releasing hormone receptor mRNA levels in vivo and in vitro.  Endocrinology. 1993;  133 931-934
  • 111 Kaiser U B, Sabbagh E, Katzenellenbogen R A, Conn P M, Chin W W. A mechanism for the differential regulation of gonadotropin subunit gene expression by gonadotropin-releasing hormone.  Proc Natl Acad Sci USA. 1995;  92 12280-12284
  • 112 Kaiser U B, Jakubowiak A, Steinberger A, Chin W W. Differential effects of gonadotropin-releasing hormone (GnRH) pulse frequency on gonadotropin subunit and GnRH receptor messenger ribonucleic acid levels in vitro.  Endocrinology. 1997;  138 1224-1231
  • 113 Bedecarrats G Y, Kaiser U B. Differential regulation of gonadotropin subunit gene promoter activity by pulsatile gonadotropin-releasing hormone (GnRH) in perifused LßT2 cells: role of GnRH receptor concentration.  Endocrinology. 2003;  144 1802-1811
  • 114 Braden T D, Conn P M. Activin-A stimulates the synthesis of gonadotropin-releasing hormone receptors.  Endocrinology. 1992;  130 2101-2105
  • 115 Norwitz E R, Xu S, Jeong K-H et al.. Activin A augments GnRH-mediated transcriptional activation of the mouse GnRH receptor gene.  Endocrinology. 2002;  143 985-997
  • 116 Norwitz E R, Cardona G R, Jeong K H, Chin W W. Identification and characterization of the gonadotropin-releasing hormone response element in the mouse gonadotropin-releasing hormone receptor gene.  J Biol Chem. 1999;  274 867-880
  • 117 Duval D L, Ellsworth B S, Clay C M. Is gonadotrope expression of the gonadotropin releasing hormone receptor gene mediated by autocrine/paracrine stimulation of an activin response element.  Endocrinology. 1999;  140 1949-1952
  • 118 Ellsworth B S, Burns A T, Escudero K W, Duval D L, Nelson S E, Clay C M. The gonadotropin releasing hormone (GnRH) receptor activating sequence (GRAS) is a composite regulatory element that interacts with multiple classes of transcription factors including SMADS, AP-1 and a forkhead DNA binding protein.  Mol Cell Endocrinol. 2003;  206 93-111
  • 119 Sheth P R, Dandekar S P, Seethalakshmi N, Sheth A R. Inhibin interaction with LHRH receptors at the pituitary level.  Arch Androl. 1982;  8 185-188
  • 120 Wang Q F, Farnworth P G, Findlay J K, Burger H G. Effect of purified 31 kDa bovine inhibin on the specific binding of GnRH to rat anterior pituitary cells in culture.  Endocrinology. 1988;  123 2161-2166
  • 121 Winters S J, Pohl C R, Adedoyin A, Marshall G R. Effects of continuous inhibin administration on gonadotropin secretion and subunit gene expression in immature and adult male rats.  Biol Reprod. 1996;  55 1377-1382
  • 122 Wang Q F, Farnworth P G, Findlay J K, Burger H G. Inhibitory effect of pure 31-kilodalton bovine inhibin on gonadotropin-releasing hormone (GNRH)-induced up-regulation of GnRH binding sites in cultured rat anterior pituitary cells.  Endocrinology. 1989;  124 363-368
  • 123 Braden T D, Farnworth P G, Burger H G, Conn P M. Regulation of the synthetic rate of gonadotropin-releasing hormone receptors in rat pituitary cell cultures by inhibin.  Endocrinology. 1990;  127 2387-2392
  • 124 Sealfon S C, Laws S C, Wu J C, Gillo B, Miller W L. Hormonal regulation of gonadotropin-releasing hormone receptors and messenger RNA activity in ovine pituitary culture.  Mol Endocrinol. 1990;  4 1980-1987
  • 125 Gregg D W, Schwall R H, Nett T M. Regulation of gonadotropin secretion and number of gonadotropin-releasing hormone receptors by inhibin, activin-A, and estradiol.  Biol Reprod. 1991;  44 725-732
  • 126 Ghosh B R, Wu J C, Strahl B D, Childs G V, Miller W L. Inhibin and estradiol alter gonadotropes differentially in ovine pituitary cultures: changing gonadotrope numbers and calcium responses to gonadotropin-releasing hormone.  Endocrinology. 1996;  137 5144-5154
  • 127 Duval D L, Farris A R, Quirk C C, Nett T M, Hamernik D L, Clay C M. Responsiveness of the ovine gonadotropin-releasing hormone receptor gene to estradiol and gonadotropin-releasing hormone is not detectable in vitro but is revealed in transgenic mice.  Endocrinology. 2000;  141 1001-1010
  • 128 Roberts V J, Barth S L, Meunier H, Vale W. Hybridization histochemical and immunohistochemical localization of inhibin/activin subunits and messenger ribonucleic acids in the rat brain.  J Comp Neurol. 1996;  364 473-493
  • 129 MacConell L A, Widger A E, Barth-Hall S, Roberts V J. Expression of activin and follistatin in the rat hypothalamus: anatomical association with gonadotropin-releasing hormone neurons and possible role of central activin in the regulation of luteinizing hormone release.  Endocrine. 1998;  9 233-241
  • 130 Florio P, Vannelli G B, Luisi S et al.. Human GnRH-secreting cultured neurons express activin betaA subunit mRNA and secrete dimeric activin A.  Eur J Endocrinol. 2000;  143 133-138
  • 131 MacConell L A, Lawson M A, Mellon P L, Roberts V J. Activin A regulation of gonadotropin-releasing hormone synthesis and release in vitro.  Neuroendocrinology. 1999;  70 246-254
  • 132 Calogero A E, Burrello N, Ossino A M, Polosa P, D’Agata R. Activin-A stimulates hypothalamic gonadotropin-releasing hormone release by the explanted male rat hypothalamus: interaction with inhibin and androgens.  J Endocrinol. 1998;  156 269-274
  • 133 Fujimura H, Ohsawa K, Funaba M et al.. Immunological localization and ontogenic development of inhibin alpha subunit in rat brain.  J Neuroendocrinol. 1999;  11 157-163
  • 134 Kumar T R, Agno J, Janovick J A, Conn P M, Matzuk M M. Regulation of FSHβ and GnRH receptor gene expression in activin receptor II knockout male mice.  Mol Cell Endocrinol. 2003;  212 19-27
  • 135 Huang H J, Wu J C, Su P, Zhirnov O, Miller W L. A novel role for bone morphogenetic proteins in the synthesis of follicle-stimulating hormone.  Endocrinology. 2001;  142 2275-2283
  • 136 Otsuka F, Shimasaki S. A novel function of bone morphogenetic protein-15 in the pituitary: selective synthesis and secretion of FSH by gonadotropes.  Endocrinology. 2002;  143 4938-4941
  • 137 Wiater E, Vale W. Inhibin is an antagonist of bone morphogenetic protein signaling.  J Biol Chem. 2003;  278 7934-7941
  • 138 Otsuka F, Moore R K, Iemura S, Ueno N, Shimasaki S. Follistatin inhibits the function of the oocyte-derived factor BMP-15.  Biochem Biophys Res Commun. 2001;  289 961-966
  • 139 Bedecarrats G Y, O’Neill F H, Norwitz E R, Kaiser U B, Teixera J. Regulation of gonadotropin gene expression by mullerian inhibiting substance.  Proc Natl Acad Sci USA. 2003;  100 9348-9353
  • 140 Ethier J F, Farnworth P G, Findlay J K, Ooi G T. Transforming growth factor-beta modulates inhibin A bioactivity in the LbetaT2 gonadotrope cell line by competing for binding to betaglycan.  Mol Endocrinol. 2002;  16 2754-2763

Ursula B KaiserM.D 

Division of Endocrinology, Diabetes, and Hypertension, Brigham and Women’s Hospital and Harvard Medical School

221 Longwood Avenue, Boston, MA 02115