References
1a
Wright MW.
Welker M.
J. Org. Chem.
1996,
61:
133
1b
Trost BM.
Schroeder GM.
J. Am. Chem. Soc.
2000,
122:
3785
2a
Angelastro MR.
Mehdi S.
Burkhart JP.
Peet NP.
Bey P.
J. Med. Chem.
1990,
33:
11
2b
Khan FA.
Prabhudas B.
Dash J.
Sahu N.
J. Am. Chem. Soc.
2000,
122:
9558
2c
Nicolaou KC.
Gray DLF.
Tae J.
J. Am. Chem. Soc.
2003,
126:
613
3a
Rao TB.
Rao JM.
Synth. Commun.
1993,
23:
1527
3b
Suda K.
Baba K.
Nakajima S.
Takanami T.
Chem. Commun.
2002,
2570
3c
Chang C.-L.
Kumar MP.
Liu R.-S.
J. Org. Chem.
2004,
69:
2793
4a
Williams DR.
Robinson LA.
Amato GS.
Osterhout MH.
J. Org. Chem.
1992,
57:
3740
4b
Chang S.
Lee M.
Ko S.
Lee PH.
Synth. Commun.
2002,
32:
1279
4c
Rao TV.
Dongre RS.
Jain SL.
Sain B.
Synth. Commun.
2002,
32:
2637
5a
Khurana JM.
Kandpal BM.
Tetrahedron Lett.
2003,
44:
4909
5b
Jain SL.
Sharma VB.
Sain B.
Tetrahedron Lett.
2004,
45:
1233
6a
Yusubov MS.
Filimonov VD.
Vasilyeva VP.
Chi K.
Synthesis
1995,
1234
6b
Rogatchov VO.
Filimonov VD.
Yusubov MS.
Synthesis
2001,
1001
6c
Yusubov MS.
Zholobova GA.
Vasilevsky SF.
Tretyakov EV.
Knight DW.
Tetrahedron
2002,
58:
1607
7
Antoniotti S.
Dunach E.
Chem. Commun.
2001,
2566
For recent transition and lanthanide metal-mediated examples, see:
8a
Baruah B.
Bourah A.
Prajapati D.
Sandhu JS.
Tetrahedron Lett.
1997,
38:
6717
8b
Baek HS.
Lee SJ.
Yoo BW.
Ko JJ.
Kim SH.
Kim JH.
Tetrahedron Lett.
2000,
41:
8097
8c
Saikia P.
Laskar DD.
Prajapati D.
Sandhu JS.
Tetrahedron Lett.
2002,
43:
7525
8d
Wang X.
Zhang Y.
Tetrahedron
2003,
59:
4201
For recent electroreductive coupling reactions, see:
9a
Hebri H.
Dunach E.
Heintz M.
Troupel M.
Perichon P.
Synlett
1991,
901
9b
Kashimura S.
Murai Y.
Ishifune M.
Masuda H.
Murase H.
Shono T.
Tetrahedron Lett.
1995,
36:
4805
9c
Kise N.
Ueda N.
Bull. Chem. Soc. Jpn.
2001,
74:
755
9d
Heintz M.
Devaud M.
Hebri H.
Dunach E.
Troupel M.
Tetrahedron
1993,
49:
2249
10
Fileti M.
Ponzio G.
Gazz. Chim. Ital.
1895,
25:
239
11a
Campillo N.
Garcia C.
Goya P.
Paez JA.
Carrasco E.
Grau M.
J. Med. Chem.
1999,
42:
1698
11b
Fröhlich LG.
Kotsonis P.
Traub H.
Tagavi-Moghadam S.
Al-Masoudi M.
Hoffmann H.
Strobel H.
Matter H.
Pfleiderer W.
Schmidt HHHW.
J. Med. Chem.
1999,
42:
4108
12 The 1H NMR of 2 showed a significantly low field shifted singlet at δ = 8.53 ppm accounting for an OH group being part of a hydrogen bridge.
13 MS analysis provided evidence for the formation of a minor amount of a dehydrogenated form of 2, that was purified by silica gel chromatography, characterized and proved to be 2-nitroso-cyclododec-2-enone (1% yield), colorless oil. 1H NMR (300 MHz, CDCl3): δ = 6.91 (t, 3
J = 7.7 Hz, 1 H), 2.74 (t, 3
J = 6.7 Hz, 2 H), 2.46 (dt, 3
J = 7.7 Hz, 3
J = 6.2 Hz, 2 H), 1.80-1.66 (m, 2 H), 1.46 (quint., 3
J = 6.2 Hz, 2 H), 1.34-1.23 (m, 10 H) ppm. 13C NMR (75 MHz, CDCl3): δ = 198.23 (s, C1), 140.99 (d, C3), 133.57 (s, C2), 37.53 (t), 29.07 (t), 26.55 (t), 25.66 (t), 24.79 (t), 24.75 (2 C, t), 24.72 (t), 23.95 (t)ppm. MS (EI): m/z (%) for C12H19NO2 (209.29) = 209 (19) [M - NO]+
, 161 (16), 149 (10), 143 (23), 132 (27), 111 (32), 98 (100), 84 (67), 55 (71).
14 In a control experiment we could show that diketone 3 did not react further to give the corresponding 1,2,3-trione, even if large excess of sodium nitrite in combination with longer reaction times was used.
15
General Procedure for the Prearation of 1,2-Diketones and 1,2-Dione Monoximes.
A suspension of the starting ketone (50 mmol) and NaNO2 (10.35 g, 150 mmol) in THF (100 mL) was cooled to 0 °C. To this mixture, concd HCl (65 mL) was added in such a way that the temperature did not exceed 10 °C. In order to avoid the evolution of nitrous gases the acid was added via cannula that was immerged into the reaction mixture. After the addition the cooling bath was removed and the suspension turned dark yellow. The progress of the reaction was monitored by GC. After the starting material had vanished (0.1-12 h) the reaction mixture containing the crude 1,2-diketone was poured into a separatory funnel containing crushed ice (200 g) and Et2O (100 mL). The organic layer was separated, and the aqueous phase extracted with Et2O (3 × 100 mL). The combined organic layers were washed with a sat. aq solution of NaHCO3 (100 mL) and with brine (100 mL), dried over MgSO4, filtered and concentrated under reduced pressure. The residue was purified by filtration over a pad of silica gel (5:1) using hexane-EtOAc (50:1) as eluent. The corresponding 1,2-dione monoximes were prepared accordingly by using only 3.45 g (50 mmol) of NaNO2 and 25 mL of concd HCl. The crude product was purified either by filtration over a pad of silica gel (5:1) using hexane-EtOAc (50:1) as eluent or by crystallization from hexane-EtOAc.
16 All new compounds were fully characterized. Selected data for novel compounds:
3-Methylcyclododecane-1,2-dione (6f): yellow oil (1.42 g). 1H NMR (300 MHz, CDCl3): δ = 3.52 (qdd, 3
J = 7.0 Hz, 3
J = 6.9 Hz, 3
J = 3.5 Hz, 1 H, H-C3), 3.36-3.27 (m, 1 H), 2.26-2.17 (m, 1 H), 1.82-1.68 (m, 3 H), 1.38-1.17 (m, 13 H), 1.10 (d, 3
J = 6.9 Hz, 3 H, CH3) ppm. 13C NMR (75 MHz, CDCl3): δ = 204.07 (s, C2), 201.93 (s, C1), 38.34 (d, C3), 36.47 (t, C12), 29.86 (t), 26.34 (t), 26.17 (t), 24.95 (t), 23.79 (t), 23.70 (t), 22.09 (t), 14.45 (q, CH3) ppm. MS (EI): m/z (%) C13H22O2 (210.32) = 210 (7) [M+
], 192 (1), 167 (3), 153 (6), 139 (8), 125 (22), 112 (29), 98 (37), 83 (24), 69 (51), 55 (100). Anal. Calcd for C13H22O2 (210.32): C, 74.24; H, 10.54. Found: C, 74.44; H, 10.60.
(
Z
)-3-Methylcyclododecane-1,2-dione-1-oxime (5f): colorless crystals (0.99 g); mp 97-98 °C (from hexane-EtOAc). 1H NMR (300 MHz, CDCl3): δ = ca. 8 (s, 1 H, NOH), 3.62 (qdd, 3
J = 7.0 Hz, 3
J = 6.9 Hz, 3
J = 3.6 Hz, 1 H, H-C12), 2.89-2.80 (m, 1 H), 2.65-2.57 (m, 1 H), 1.84-1.76 (m, 1 H), 1.66-1.42 (m, 3 H), 1.37-1.16 (m, 12 H), 1.09 (d, 3
J = 6.9 Hz, 3 H, CH3) ppm. 13C NMR (75 MHz, CDCl3): δ = 203.15 (s, C1), 160.06 (s, C2), 39.64 (d, C12), 31.38 (t, C3), 26.09 (t, 2 C), 25.04 (t), 23.42 (t), 22.87 (t), 22.65 (t), 21.89 (t), 21.19 (t), 15.12 (q, CH3) ppm. MS (EI): m/z (%) C13H23NO2 (225.32) = 225 (4) [M+
], 208 (26), 197 (5), 180 (42), 168 (11), 138 (18), 124 (26), 110 (28), 96 (34), 82 (37), 69 (45), 55 (100). Anal. Calcd for C13H23NO2 (225.33): C, 69.29; H, 10.29; N, 6.22. Found: C, 69.18; H, 10.19; N, 6.11.
3-Methoxycyclododecane-1,2-dione (6g): yellow oil (1.23 g). 1H NMR (300 MHz, CDCl3): δ = 4.85 (t, 3
J = 4.4 Hz, 1 H, H-C3), 3.38 (s, 3 H, OCH3), 2.23-2.14 (m, 1 H), 1.90-1.83 (m, 2 H), 1.73-1.66 (m, 2 H), 1.53-1.49 (m, 1 H), 1.39-1.02 (m, 12 H) ppm. 13C NMR (75 MHz, CDCl3): δ = 202.10 (s), 199.00 (s), 81.14 (d, C3), 57.61 (q, OCH3), 36.71 (t, C12), 27.30 (t), 26.21 (t), 26.17 (t), 24.33 (t), 23.29 (t), 22.03 (t), 21.83 (t), 19.48 (t) ppm. MS (EI): m/z (%) C13H22O2 (210.32) = 226 (1) [M+
], 198 (8), 148 (5), 138 (8), 127 (6), 109 (13), 96 (19), 82 (43), 71 (100), 55 (34). Anal. Calcd for C13H22O3 (226.32): C, 68.99; H, 9.80. Found: C, 69.12; H, 9.85.
(
Z
)-3-Methoxycyclododecane-1,2-dione-1-oxime (5g): colorless crystals (1.86 g); mp 100-102 °C (from hexane-EtOAc). 1H NMR (300 MHz, CDCl3): δ = 7.50 (s, 1 H, NOH), 4.88-4.86 (m, 1 H, H-C12), 3.37 (s, 3 H, OCH3), 2.94-2.84 (m, 1 H), 2.65-2.58 (m, 1 H), 1.97-1.86 (m, 2 H), 1.55-1.37 (m, 2 H), 1.36-1.02 (m, 12 H) ppm. 13C NMR (75 MHz, CDCl3): δ = 198.16 [s, C(1)], 159.63 [s, C(2)], 82.52 [d, C(12)], 57.46 (q, OCH3), 29.03 (t), 26.24 (t), 26.16 (t), 24.02 (t), 22.81 (t), 22.50 (t), 21.91 (t), 21.78 (t), 18.80 (t)ppm. MS (EI): m/z (%) C13H23NO2 (225.33) = 241 (2) [M+
], 224 (58), 196 (95), 182 (17), 166 (14), 120 (23), 110 (21), 96 (27), 71 (100), 55 (52). Anal. Calcd for C13H23NO3 (241.33): C, 64.70; H, 9.61; N, 5.80. Found: C, 64.83; H, 9.70; N, 5.88.
17
Rüedi G.
Nagel M.
Hansen H.-J.
Org. Lett.
2003,
5:
2691
18
(+)-
trans
-2-(2,2,3-Trimethylcyclopentyl)-1-phenyl-ethanedione (13): bright yellow oil; [α]D
23 +39.2 (c 1.6, CH2Cl2). 1H NMR (300 MHz, CDCl3): δ = 8.03 (dd, 3
J = 8.2 Hz, 4
J = 1.4 Hz, 2 H), 7.64-7.59 (m, 1 H), 7.52-7.47 (m, 2 H), 3.61 (dd, 3
J = 8.3, 6.4 Hz, 1 H), 2.10-1.24 (m, 5 H), 0.97 (s, 3 H), 0.95 (s, 3 H), 0.87 (d, 3
J = 6.9 Hz, 3 H) ppm. 13C NMR (75 MHz, CDCl3): δ = 205.83 (s), 192.16 (s), 135.10 (s), 134.17 (d), 130.40 (d), 128.70 (d), 55.64 (d), 45.75 (s), 44.27 (d), 31.74 (t), 24.92 (q), 24.81 (t), 24.22 (q), 14.44 (q) ppm. MS (EI): m/z (%) C16H20O2 (244.33) = 244 (3) [M+
], 139 (59) [M - COPh]+
, 111 (97), 105 (82) [COPh+
], 77 (75), 69 (100), 55 (94).
19 Several reactions were conducted on a 20 g scale.