Subscribe to RSS
DOI: 10.1055/s-2004-832825
Synthesis of Xantheno[1,9-cd]azepines: Electrophilic Cyclization of Carbamates and N-Acyliminium Ions
Publication History
Publication Date:
24 September 2004 (online)
Abstract
Tetracyclic xantheno[1,9-cd]azepines and pentacyclic pyrrolo[1,2-a]xantheno[1,9-cd]azepines can be synthesized by assembling the azepine ring via cyclization of tertiary carbamates and N-acyliminium ions, respectively.
Key words
2-benzazepines - xantheno[1,9-cd]azepines - cyclization of carbamates - N-acyliminium ions - pyrrolo[1,2-a]xantheno[1,9-cd]azepines
- 1
Brugnara C,Halperin J, andBellot E. inventors; WO 9926628. ; Chem. Abstr. 1999, 131, 18936 - 2
Nallet JP,Megard A, andDreux J. inventors; FR 2745812. ; Chem. Abstr. 1998, 128, 22823 - 3
Johnson RE, andBusacca CA. inventors; US 5098901. ; Chem. Abstr. 1992, 117, 7949 - 4
Sawa Y.Kato T.Masuda T. Chem. Pharm. Bull. 1975, 23: 1917 -
5a
Stein RP, andDelecki DJ. inventors; US 4129561. ; Chem. Abstr. 1979, 90, 152035 -
5b
Nadelson J, andHoulihan WJ. inventors; US 3976634. ; Chem. Abstr. 1997, 86, 5500 - 6
García A.Paz S.Domínguez D. Tetrahedron Lett. 2001, 42: 665 - For a related cyclization of carbamates to simple 2-benzazepines, see:
-
7a
Sánchez IH.López FJ.Soria JJ.Larraza MI.Flores HJ. J. Am. Chem. Soc. 1983, 105: 7640 -
7b
Sánchez IH.Larraza MI.Flores HJ.Martell EA.Linzaga I.Carter AA. Heterocycles 1985, 23: 251 - 9
Filippatos E.Papadaki-Valiraki A.Roussakis C.Verbist JF. Arch. Pharm. (Weinheim, Ger.) 1993, 326: 451 - 10
Fodor G.Nagubandi S. Tetrahedron 1980, 36: 1279 - Although the Bischler-Napieralski cyclization of secondary formamides is very effective for the formation of six-membered rings, it is generally less useful for the synthesis of 2-benzazepines, low yields having frequently been reported:
-
11a
Alonso R.Takahashi K.Schönenberger B.Brossi A. Heterocycles 1987, 26: 1595 -
11b
Bird CW.Brown AL.Chan CC.Lewis A. Tetrahedron Lett. 1989, 30: 6223 -
11c
Clark RD.Weinhardt KK.Berger J.Fisher LE.Brown CM.MacKinnon AC.Kilpatrick AT.Spedding M. J. Med. Chem. 1990, 33: 633 - 12
Banwell MG.Bissett BD.Busato S.Cowden CJ.Hockless DCR.Holman JW.Read RW.Wu AW. J. Chem. Soc., Chem. Commun. 1995, 2551 - Some recent examples of electrophilic cyclization of carbamates leading to isoquinolones:
-
13a
Wang YC.Georghiou PE. Org. Lett. 2002, 4: 2675 -
13b
Kakefuda A.Watanabe T.Takahashi T.Sakamoto S.Tsukamota SI. Synth. Commun. 2001, 31: 401 -
13c
Pampin MC.Estévez JC.Castedo L.Estévez RJ. Tetrahedron Lett. 2001, 42: 2307 -
13d
Banwell MG.Harvey JE.Hockless DCR.Wu AW. J. Org. Chem. 2000, 65: 4241 -
13e
Treus M.Estévez JC.Castedo L.Estévez RJ. Tetrahedron Lett. 2000, 41: 6351 - 14 A 15% yield has been reported in the cyclization of a secondary carbamate:
Potapov VM.Dem’yanovich VM.Solov’eva LD.Vendrova OE. Khim. Geterotsikl. Soedin. 1981, 5: 675 ; Chem. Abstr. 1981, 95, 132135 - 16 Tertiary amides, which cannot form nitrilium ions under the Bischler-Napieralski reaction conditions, are known not to afford seven-membered rings under these conditions:
Schlüter G.Meise W. Liebigs Ann. Chem. 1988, 833 - Cyclization by intramolecular amidoalkylation of aromatics with reactive N-acyliminium ions allows the synthesis of a variety of benzofused heterocyclic systems:
-
17a
Speckamp WN.Hiemstra H. Tetrahedron 1985, 41: 4367 -
17b
Speckamp WN.Moolenaar MJ. Tetrahedron 2000, 56: 3817 -
19a There are only a few known examples of N-acyliminium cyclizations leading to seven-membered benzofused heterocycles:
Bahajaj AA.Vernon JM.Wilson GD. J. Chem. Soc., Perkin Trans. 1 2001, 1446 ; and references therein -
19b For a related cyclization leading to a 5-7-6 tricyclic aza-analogue, see:
Marson CM.Pink JH.Hall D.Hursthouse MB.Malik A.Smith C. J. Org. Chem. 2003, 68: 792
References
All new compounds were fully characterized spectroscopically and had satisfactory elemental analyses or HRMS data.
15
3-Butyl-7-methoxy-2,3,4,12b-tetrahydro-1
H
-xantheno[1,9-
cd
]azepin-4-one (2b):
A solution of Tf2O (1 mL, 5.9 mmol) in 1 mL CH2Cl2 was slowly added over 15 min to a cooled (0 °C) solution of 8 (90 mg, 0.23 mmol) and DMAP (85 mg, 0.69 mmol) in 6 mL of dry CH2Cl2 under Ar. The resulting mixture was allowed to reach r.t. overnight and was then worked up by pouring onto a sat. Na2CO3 solution. The organic phase was washed with 20% (v/v) aq HOAc, sat. solution of Na2CO3 and brine. After evaporation of solvent, the crude residue was chromatographed on an SiO2 column, elution with 50:50 hexane-EtOAc affording 51 mg (65%) of 2b as an oil. IR (film): ν = 3005-2810, 1649 (CO), 1467 cm-1. 1H NMR (250.13 MHz, CDCl3): δ = 1.00 (t, J = 7.3 Hz, 3 H), 1.43 (sextet, J = 7.4 Hz, 2 H), 1.60-1.71 (m, 2 H), 1.82 (m, 1 H), 2.50-2.60 (m, 1 H), 3.14 (dd, J = 14.8 and 6.3 Hz, 1 H), 3.35 (td, J = 13.4 and 5.5 Hz, 1 H), 3.45-3.54 (m, 1 H), 3.64-3.70 (m, 1 H), 3.94 (s, 3 H), 4.24 (dd, J = 14.8 and 7.4 Hz, 1 H), 6.89 (d, J = 8.5 Hz, 1 H), 7.04 (t, J = 7.7 Hz, 1 H), 7.07-7.20 (m, 3 H), 7.37 (d, J = 8.5 Hz, 1 H). 13C NMR/DEPT (62.83 MHz, CDCl3): δ = 14.3 (CH3), 20.7 (CH2), 31.4 (CH2), 33.4 (CH), 40.9 (CH2), 46.1 (CH2), 47.6 (CH2), 56.5 (CH3), 110.6 (CH), 117.3 (CH), 120.3 (C), 122.6 (C), 123.6 (CH), 123.9 (CH), 128.4 (CH), 128.3 (CH), 128.9 (C), 139.5 (C), 149.8 (C), 150.3 (C), 170.3 (C). MS (EI): m/z (%) = 337 (1) [M+], 306 (7), 254 (26), 253 (100), 238 (73), 210 (96). HRMS (EI): m/z calcd for C20H20NO2 [M+ - OMe]: 306.1494; found: 306.1502.
(11b
R
*,3a
R
*)-6-Methoxy-2,3,3a,11b,12,13-hexahydro-1
H
-pyrrolo[1,2-
a
]xantheno[1,9-
cd
]azepin-1-one (15a):
A solution of hydroxylactam 14 (2.14 g, 6.31 mmol) in TFA (30 mL) was stirred at r.t. for 4 h and then cooled to 0 °C, cautiously neutralized by dropwise addition of 5 N NaOH and extracted twice with CH2Cl2. The organic extract was washed with H2O, dried with Na2SO4 and concentrated. The residue was crystallized from CH2Cl2-hexane, affording 15a as brown crystals (1.10 g, 55%). Mp: 219-221 °C. IR (KBr): ν = 3444, 1693 (CO) cm-1. 1H NMR (250.13 MHz, CDCl3): δ = 1.77-1.80 (m, 1 H), 2.05-2.09 (m, 1 H), 2.40-2.57 (m, 4 H), 2.80-2.90 (m, 1 H), 3.94 (s, 3 H), 4.03 (dd, J = 14.1 and 8.5 Hz, 1 H), 4.30 (dd, J = 12.1 and 5.3 Hz, 1 H), 4.85 (dd, J = 10.5 and 6.4 Hz, 1 H), 6.84 (s, 2 H), 7.05 (td, J = 6.6 and 1.9 Hz, 1 H), 7.10-7.24 (m, 3 H). 13C NMR/DEPT (62.83 MHz, CDCl3): δ = 30.23 (CH2), 31.54 (CH), 31.64 (CH2), 36.75 (CH2), 36.95 (CH2), 56.17 (OCH3), 65.61 (CH), 110.25 (CH), 116.61 (CH), 120.65 (C), 121.96 (CH), 122.54 (C), 123.44 (CH), 127.82 (CH), 128.44 (CH), 129.59 (C), 140.52 (C), 147.76 (C), 150.11 (C), 174.24 (C). MS (EI): m/z (%) = 321 (100) [M+], 265 (16), 237 (60). Anal. Calcd for C20H19NO3: C, 74.75; H, 5.96; N, 4.36. Found: C, 74.57; H, 5.77; N, 4.41.