References
1a
Catalytic Asymmetric Synthesis
Ojima I.
Wiley-VCH;
New York:
2000.
1b
Comprehensive Asymmetric Catalysis
Jacobsen EN.
Pfaltz A.
Yamamoto H.
Springer;
New York:
1999.
For selected examples on the use of achiral templates in enantioselective transformations from other laboratories see:
2a
Matsunaga S.
Kinoshita T.
Okada S.
Harada S.
Shibasaki M.
J. Am. Chem. Soc.
2004,
126:
7559
2b
Corminboeuf O.
Renaud P.
Org. Lett.
2002,
4:
1731
2c
Kanemasa S.
Oderaotoshi Y.
Sakaguchi S.-i.
Yamamoto H.
Tanaka J.
Wada E.
Curran DP.
J. Am. Chem. Soc.
1998,
120:
3074
2d
Evans DA.
Miller SJ.
Lectka T.
von Matt P.
J. Am. Chem. Soc.
1999,
121:
7559
2e
Jensen KB.
Gothelf KV.
Hazell RG.
Jørgensen KA.
J. Org. Chem.
1997,
62:
2471
2f
Kanemasa S.
Kanai T.
J. Am. Chem. Soc.
2000,
122:
10710
2g
Palomo C.
Oiarbide M.
Garcia JM.
Gonzalez A.
Arceo E.
J. Am. Chem. Soc.
2003,
125:
13942
2h For work from our laboratory see: Sibi MP.
Sausker JB.
J. Am. Chem. Soc.
2002,
124:
984
2i
Sibi MP.
Shay JJ.
Ji J.
Tetrahedron Lett.
1997,
38:
5955
2j
Sibi MP.
Shay JJ.
Liu M.
Jasperse CP.
J. Am. Chem. Soc.
1998,
120:
6615
2k
Sibi MP.
Liu M.
Org. Lett.
2000,
2:
3393
3
Sibi MP.
Venkatraman L.
Liu M.
Jasperse CP.
J. Am. Chem. Soc.
2001,
123:
8444
4a For a mini review on this subject see: Corminboeuf O.
Quaranta L.
Renaud P.
Liu M.
Jasperse CP.
Sibi MP.
Chem.-Eur. J.
2003,
9:
28
4b Chiral relay in diastereoselective transformations see: Bull SD.
Davies SG.
Fox DJ.
Garner AC.
Sellers TGR.
Pure Appl. Chem.
1998,
70:
1501
4c Selected examples of chiral relay in enantioselective transformations: Watanabe Y.
Mase N.
Furue R.
Toru T.
Tetrahedron Lett.
2001,
42:
2981
4d
Davis TJ.
Balsells J.
Carroll PJ.
Walsh PJ.
Org. Lett.
2001,
3:
2161
4e
Balsells J.
Walsh PJ.
J. Am. Chem. Soc.
2000,
122:
1802
4f
Evans DA.
Campos KR.
Tedrow JS.
Michael FE.
Gagné MR.
J. Am. Chem. Soc.
2000,
122:
7905
4g
Hiroi K.
Ishii M.
Tetrahedron Lett.
2000,
41:
7071
4h
Wada E.
Pei W.
Kanemasa S.
Chem. Lett.
1994,
2345
4i
Sibi MP.
Zhang R.
Manyem S.
J. Am. Chem. Soc.
2003,
125:
9306
4j
Quaranta L.
Corminboeuf O.
Renaud P.
Org. Lett.
2002,
4:
39
5a
Sibi MP.
Ma Z.
Jasperse CP.
J. Am. Chem. Soc.
2004,
126:
718
5b
Sibi MP.
Itoh K.
Jasperse CP.
J. Am. Chem. Soc.
2004,
126:
5366
5c
Sibi MP.
Liu M.
Org. Lett.
2001,
3:
4181
For reviews on stereoselective radical chemistry see:
6a
Renaud P.
Gèrster M.
Angew. Chem. Int. Ed.
1998,
37:
2563
6b
Sibi MP.
Porter NA.
Acc. Chem. Res.
1999,
32:
163
6c
Sibi MP.
Manyem S.
Zimmerman J.
Chem. Rev.
2003,
103:
3263
6d
Bar G.
Parsons AF.
Chem. Soc. Rev.
2003,
32:
251
6e
Sibi MP.
Manyem S.
Tetrahedron
2000,
56:
8303
6f See also:
Radicals in Organic Synthesis
Vol. 1:
Renaud P.
Sibi MP.
Wiley-VCH;
Weinheim:
2001.
6g
Radicals in Organic Synthesis
Vol. 2:
Renaud P.
Sibi MP.
Wiley-VCH;
Weinheim:
2001.
Enantioselective conjugate radical reactions:
7a
Sibi MP.
Ji J.
Wu JH.
Gurtler S.
Porter NA.
J. Am. Chem. Soc.
1996,
118:
9200
7b
Sibi MP.
Ji J.
J. Org. Chem.
1997,
62:
3800
7c
Sibi MP.
Shay JJ.
Ji J.
Tetrahedron Lett.
1997,
38:
5955
7d
Sibi MP.
Chen J.
J. Am. Chem. Soc.
2001,
123:
9472
7e
Sibi MP.
Manyem S.
Org. Lett.
2002,
4:
2929
7f
Sibi MP.
Petrovic G.
Tetrahedron: Asymmetry
2003,
15:
2879
7g
Sibi MP.
Zimmerman J.
Rheault TR.
Angew. Chem. Int. Ed.
2003,
42:
4521
7h
Iserloh U.
Curran DP.
Kanemasa S.
Tetrahedron: Asymmetry
1999,
10:
2417
7i
Murakata M.
Tsutsui H.
Hoshino O.
Org. Lett.
2001,
3:
299
7j
Sibi MP.
He L.
Org. Lett.
2004,
6:
1749
8 For the synthesis of pyrazolidinone templates see details in ref.
[3]
and ref.
[5]
9
Typical Reaction Conditions: The chiral ligand (0.031 mmol) and Lewis acid (0.03 mmol) were dissolved in CH2Cl2 at r.t. under nitrogen and stirred for 30 min. The substrate (0.1 mmol) was added and the mixture was stirred for an additional 30 min. The reaction mixture was cooled to -78 °C and after 15 min, the reaction was initiated by sequential addition of 2-iodopropane (0.5 mmol), tributyltin hydride (0.2 mmol), triethyl borane (0.3 mmol) and oxygen (10 mL). After 2 h, the reaction was quenched with silica gel (5 g), evaporated, washed with hexane (50 mL) and extracted with EtOAc. The product was purified by column chromatography over silica gel.
Compound 5a (entry 1, Table
[1]
): 1H NMR (500 MHz, CDCl3): d = 0.74 (d, 3 H, J = 6.5 Hz,), 0.79 (t, 3 H, J = 7.0 Hz,), 0.98 (s, 3 H), 0.99 (d, 3 H, J = 6.5 Hz), 1.13 (m, 4 H), 1.19 (s, 3 H), 1.89 (m, 1 H), 2.48 (m, 2 H), 2.67 (m, 2 H), 3.05 (m, 2 H), 3.58 (m, 1 H), 7.21 (m, 5 H). 13C NMR (125 MHz, CDCl3): d = 20.7, 21.0, 21.2, 21.3, 25.8, 26.1, 27.1, 33.5, 39.8, 43.7, 48.9, 60.6, 61.9, 126.3, 128.1, 128.8, 143.2, 170.2, 175.7. HRMS: m/z calcd for C21H32N2O2Na+: 367.2356; found: 367.2360. [a]D
25 -7.03 (c 1.18, CHCl3) ee 52% (Chiralcel AD, hexanes-i-PrOH 99:1, flow rate 0.5 mL/min; t
R major enantiomer: 17.7 min, minor enantiomer: 21.2 min).
Compound 5b (entry 2, Table
[1]
): 1H NMR (500 MHz, CDCl3): d = 0.74 (d, 3 H, J = 7.0 Hz,), 0.77 (d, 3 H, J = 2.0 Hz), 0.79 (d, 3 H, J = 2.0 Hz), 0.98 (d, 3 H, J = 7.0 Hz), 0.99 (s, 3 H), 1.17 (s, 3 H), 1.60 (m, 1 H), 1.88 (m, 1 H), 2.31 (m, 2 H), 2.48 (m, 2 H), 3.04 (m, 2 H), 3.52 (m, 1 H), 7.17 (m, 5 H). 13C NMR (125 MHz, CDCl3): d = 14.0, 20.7, 20.8, 21.0, 25.7, 29.5, 33.5, 39.5, 44.3, 48.9, 53.1, 60.2, 126.4, 128.1, 128.8, 143.2, 170.3, 175.5. HRMS: m/z calcd for C21H32N2O2Na+: 367.2356; found: 367.2359. [a]D
25 -6.4 (c 1.66, CHCl3) ee 58% (Chiralcel AS, hexanes-i-PrOH 99:1, flow rate 0.5 mL/min; t
R minor enantiomer: 11.3 min, major enantiomer: 21.1 min).
Compound 5c (entry 1, Table
[2]
): 1H NMR (500 MHz, CDCl3): d = 0.71 (d, 3 H, J = 6.5 Hz,), 0.93 (d, 3 H, J = 6.5 Hz), 1.00 (s, 3 H), 1.14 (s, 3 H), 1.85 (m, 1 H), 2.43 (m, 2 H), 2.89 (m, 1 H), 2.98 (m, 1 H), 3.42 (m, 1 H), 3.85 (s, 2 H), 7.24 (m, 10 H). 13C NMR (125 MHz, CDCl3): d = 20.6, 21.0, 26.1, 26.2, 33.4, 39.5, 44.0, 48.7, 56.7, 60.7, 126.4, 127.7, 128.2, 128.6, 128.8, 129.5, 137.7, 143.4, 169.9, 174.6. HRMS: m/z calcd for C24H30N2O2Na+: 401.2200; found: 401.2222. [a]D
25 -13.4 (c 1.0, CHCl3) ee 98% (Chiralcel AS, hexanes-i-PrOH 98:2, flow rate 0.5 mL/min; t
R minor enantiomer: 25.3 min, major enantiomer: 31.0 min).
Compound 5d (entry 4, Table
[1]
): 1H NMR (500 MHz, CDCl3): d = 0.47 (d, 3 H, J = 8.0 Hz,), 0.59 (d, 3 H, J = 8.0 Hz), 1.14 (s, 3 H), 1.19 (s, 3 H), 1.52 (m, 1 H), 2.65 (m, 5 H), 4.16 (d, 1 H, J = 16.0 Hz), 4.35 (d, 1 H, J = 16.0 Hz), 6.86 (d, 2 H, J = 9.0 Hz), 7.08 (m, 3 H), 7.36 (m, 1 H), 7.48 (m, 1 H), 7.55 (m, 2 H), 7.75 (d, 1 H, J = 10.5 Hz), 7.83 (d, 1 H, J = 10.5 Hz), 8.14 (d, 1 H, J = 11.0 Hz). 13C NMR (125 MHz, CDCl3): d = 20.2, 20.6, 25.8, 26.3, 32.9, 38.9, 43.4, 47.9, 54.9, 61.3, 123.5, 125.7, 125.9, 126.1, 126.5, 128.1, 128.7, 129.1, 132.1, 132.6, 133.8, 143.2, 170.8, 174.3. HRMS: m/z calcd for C28H32N2O2Na+: 451.2355; found: 451.2347. [a]D
25 -30.24 (c 1.64, CHCl3) ee 90% (Chiralcel AD, hexanes-i-PrOH 97:3, flow rate 1.0 mL/min; t
R minor enantiomer: 14.4 min, major enantiomer: 19.0 min).
10 The absolute stereochemistry of the products 5a-d were determined by hydrolysis to the acid and comparison of their rotation with 3-phenyl-4-methyl-pentanoic acid.
11a For a review on stereochemical reversal see: Sibi MP.
Liu M.
Curr. Org. Chem.
2000,
5:
735
11b
Evans DA.
Johnson JS.
Bergey CS.
Campos KR.
Tetrahedron Lett.
1999,
40:
2879
12 Although the proximity will vary, the ligand will be orthogonal to the substrate so long as one of the ligand nitrogen occupies an apical position, whether that is in an octahedral, trigonal bipyramidal, square pyramidal, or tetrahedral complex.
13 The molecular graphics images in Figure
[2]
were produced using the UCSF Chimera package from the Computer Graphics Laboratory, University of California-San Francisco.
14 In cycloadditions the bulk of the pyrazolidinone templates can also influence regioselectivity (ref.
[5b]
) or exo/endo diastereoselectivity (ref.
[5a]
).
15 Magnesium iodide and magnesium triflimide both provide nearly identical results when used in combination with ligand 8; for example see entry 14 in Table
[2]
and entry 1 in Table
[4]
. The cheaper magnesium iodide was used for experiments in Table
[4]
.