References
- 1
Carreño MC.
Chem. Rev.
1995,
95:
1717 ; and references cited therein
-
Reviews on asymmetric sulfoxidation:
-
3a
Kagan HB.
Luukas T. In
Transition Metals for Organic Synthesis, Beller M., Bolm C.
2nd ed.:
Wiley-VCH;
Weinheim:
2004.
p.in press
-
3b
Bolm C.
Muñiz K.
Hildebrand JP. In
Comprehensive Asymmetric Catalysis
Jacobsen EN.
Pfaltz A.
Yamamoto H.
Springer-Verlag;
Berlin:
1999.
p.697
-
3c
Kagan HB. In Catalytic Asymmetric Synthesis
2nd ed.:
Ojima I.
Wiley-VCH;
New York:
2000.
p.327
-
3d For a recent review on chiral sulfoxides, see: Fernández I.
Khiar N.
Chem. Rev.
2003,
103:
3651
-
4a
Legros J.
Bolm C.
Angew. Chem. Int. Ed.
2003,
42:
5487
-
4b
Legros J.
Bolm C.
Angew. Chem. Int. Ed.
2004,
43:
4225
- 5
Buschmann H.
Christoph T. In
Analgesics
Buschmann H.
Christoph T.
Friderichs E.
Maul C.
Sundermann B.
Wiley-VCH;
Weinheim:
2002.
p.106 ; and references cited therein
- 6
Haanen C.
Curr. Opin. Inv. Drugs
2001,
2:
677 ; and references cited therein
-
7a
Weggen S.
Eriksen JL.
Das P.
Sagi SH.
Wang R.
Pietrzik CU.
Findlay KA.
Smith TE.
Murphy MP.
Bulter T.
Kang DE.
Marquez-Steriling N.
Golde TE.
Koo EH.
Nature
2001,
414:
212
-
7b
Zhou Y.
Su Y.
Li B.
Liu F.
Ryder JW.
Wu X.
Gonzalez-DeWhitt PA.
Gelfanova V.
Hale JE.
May PM.
Paul SM.
Ni B.
Science
2003,
302:
1215
- 8
Maguire AR.
Papot S.
Ford A.
Touhey S.
O’Connor R.
Clynes M.
Synlett
2001,
41
-
Schiff bases of this type have also been used in vanadium-catalyzed asymmetric sulfoxidations, see:
-
10a
Bolm C.
Bienewald F.
Angew. Chem., Int. Ed. Engl.
1995,
34:
2640
-
10b
Bolm C.
Schlingloff G.
Bienewald F.
J. Mol. Catal. A: Chem.
1997,
117:
347
-
10c
Bolm C.
Bienewald F.
Synlett
1998,
1327
-
10d
Pelotier B.
Anson MS.
Campbell IB.
Macdonald SJF.
Priem G.
Jackson RFW.
Synlett
2002,
1055
-
10e
Blum SA.
Bergmann RG.
Ellman JA.
J. Org. Chem.
2003,
68:
150
-
10f
Weix DJ.
Ellman JA.
Org. Lett.
2003,
5:
1317
-
10g For a review, see: Bolm C.
Coord. Chem. Rev.
2003,
237:
245 ; and references therein
- 12
Brunel JM.
Diter P.
Duetsch M.
Kagan HB.
J. Org. Chem.
1995,
60:
8086
- 13
Pines SH.
Douglas AW.
J. Am. Chem. Soc.
1976,
99:
8119
- 14
Shuman RF.
Pines SH.
Shearin WE.
Czaja RF.
Abramson NL.
Tul R.
J. Org. Chem.
1977,
42:
1914
- 16 For a recent mechanistic study on iron-catalyzed epoxidations with combinations of acetic acid and hydrogen peroxide, see: Fujita M.
Que L.
Adv. Synth. Catal.
2004,
346:
190
2 Review on biologically active sulfoxides: Legros, J.; Dehli, J. R.; Bolm, C. submitted for publication.
9 In their paper (ref.
[8]
) Maguire et al. also describe an unsuccessful attempt to use the vanadium-catalyzed sulfide oxidation reported by Bolm et al. (ref. 10a-c) in the preparation of Sulindac. It should be noted, however, that this result was achieved with an inappropriately substituted Schiff base ligand.
11 Recently (July 7, 2004 at ISOCS-XXI), Naso reported on an enantioselective synthesis of Sulindac using catalytic amounts of a chiral titanium complex. In this protocol the product is obtained with 77-90% ee.
15
Experimental Procedure for the Synthesis of (
S
)-(-)-6-Fluoro-3-(4-methanesulfinyl-benzyl)-2-methyl-1
H
-indene (
3):
Fe(acac)3 (7.1 mg, 0.02 mmol) and (S)-4 (18.9 mg, 0.04 mmol) were dissolved in CH2Cl2 (0.7 mL), and the clear red solution was stirred until it turned clear brown (15 min). This solution was then transferred into a 10 mL flask containing a suspension of 4-methoxybenzoic acid (5a, 1.5 mg, 0.01 mmol) in CH2Cl2 (0.5 mL). The resulting mixture was stirred for 10 min. A solution of sulfide 2 (284 mg, 1.00 mmol) in CH2Cl2 (0.8 mL) was then added to the previous solution, followed by dropwise addition of aq H2O2 (35%; 1.20 mmol). The flask was then capped and the reaction mixture slowly stirred at r.t. (approximately 150 rpm). After 16 h, the aqueous layer was separated, the organic layer was dried (MgSO4), filtered, and the solvent was removed in vacuo. Purification by flash chromatography on silica gel (pentane-Et2O 1:2, then EtOAc) led to (S)-3 as a white solid (213 mg, 71% yield, 92% ee). [α]D
25 -70.4 (c 1.0, CHCl3); mp 101-102 °C. IR (KBr): ν = 1038 (S-O) cm-1. 1H NMR (400 MHz, CDCl3): δ = 2.13 (s, 3 H, CH3), 2.69 (s, 3 H, SOCH3), 3.37 (s, 2 H, CH2), 3.91 (s, 2 H, CH2), 6.82-6.95 (m, 2 H), 7.09 (dd, J = 8.6, 2.3 Hz, 1 H), 7.36 (d, J = 8.2 Hz, 2 H), 7.53 (d, J = 8.4 Hz, 2 H) ppm. 13C NMR (100 MHz, CDCl3): δ = 14.2 (CH3), 31.1 (CH2), 42.6 (d, 4
J
CF = 2.3 Hz, CH2), 43.9 (CH3), 110.9 (d, 2
J
CF = 23.7 Hz, CH), 112.5 (d, 2
J
CF = 22.1 Hz, CH), 118.7 (d, 3
J
CF = 8.4 Hz, CH), 123.6 (CH), 129.1 (CH), 133.6 (C), 139.9 (d, 4
J
CF = 3.8 Hz, C), 141.7 (C), 143.0 (C), 143.1 (C), 144.1 (d, 3
J
CF = 8.4 Hz, C), 160.7 (d, 1
J
CF = 241.0 Hz, C) ppm. MS (EI/DIP): m/z (%) = 301 (16) [M+ + H], 300(70) [M+], 285 (11), 283 (30), 236 (12), 153 (26), 148 (11), 147 (100), 146 (20), 138 (13), 137 (34), 107 (18). HPLC conditions (Chiralpak AS column; λ = 254 nm; Temp = 20 °C; flow rate = 0.5 mL/min; heptane-i-PrOH, 7:3): t
R R = 59.8 min, t
R S = 75.0 min.
17 Attempts to perform the oxidation of Sulindac sulfide gave unsatisfying results, presumable due to the presence of the carboxylic moiety in the molecule. For the effect of an excess of acid, see ref. 4b.