References
1
Carreño MC.
Chem. Rev.
1995,
95:
1717 ; and references cited therein
2 Review on biologically active sulfoxides: Legros, J.; Dehli, J. R.; Bolm, C. submitted for publication.
Reviews on asymmetric sulfoxidation:
3a
Kagan HB.
Luukas T. In
Transition Metals for Organic Synthesis, Beller M., Bolm C.
2nd ed.:
Wiley-VCH;
Weinheim:
2004.
p.in press
3b
Bolm C.
Muñiz K.
Hildebrand JP. In
Comprehensive Asymmetric Catalysis
Jacobsen EN.
Pfaltz A.
Yamamoto H.
Springer-Verlag;
Berlin:
1999.
p.697
3c
Kagan HB. In Catalytic Asymmetric Synthesis
2nd ed.:
Ojima I.
Wiley-VCH;
New York:
2000.
p.327
3d For a recent review on chiral sulfoxides, see: Fernández I.
Khiar N.
Chem. Rev.
2003,
103:
3651
4a
Legros J.
Bolm C.
Angew. Chem. Int. Ed.
2003,
42:
5487
4b
Legros J.
Bolm C.
Angew. Chem. Int. Ed.
2004,
43:
4225
5
Buschmann H.
Christoph T. In
Analgesics
Buschmann H.
Christoph T.
Friderichs E.
Maul C.
Sundermann B.
Wiley-VCH;
Weinheim:
2002.
p.106 ; and references cited therein
6
Haanen C.
Curr. Opin. Inv. Drugs
2001,
2:
677 ; and references cited therein
7a
Weggen S.
Eriksen JL.
Das P.
Sagi SH.
Wang R.
Pietrzik CU.
Findlay KA.
Smith TE.
Murphy MP.
Bulter T.
Kang DE.
Marquez-Steriling N.
Golde TE.
Koo EH.
Nature
2001,
414:
212
7b
Zhou Y.
Su Y.
Li B.
Liu F.
Ryder JW.
Wu X.
Gonzalez-DeWhitt PA.
Gelfanova V.
Hale JE.
May PM.
Paul SM.
Ni B.
Science
2003,
302:
1215
8
Maguire AR.
Papot S.
Ford A.
Touhey S.
O’Connor R.
Clynes M.
Synlett
2001,
41
9 In their paper (ref.
[8]
) Maguire et al. also describe an unsuccessful attempt to use the vanadium-catalyzed sulfide oxidation reported by Bolm et al. (ref. 10a-c) in the preparation of Sulindac. It should be noted, however, that this result was achieved with an inappropriately substituted Schiff base ligand.
Schiff bases of this type have also been used in vanadium-catalyzed asymmetric sulfoxidations, see:
10a
Bolm C.
Bienewald F.
Angew. Chem., Int. Ed. Engl.
1995,
34:
2640
10b
Bolm C.
Schlingloff G.
Bienewald F.
J. Mol. Catal. A: Chem.
1997,
117:
347
10c
Bolm C.
Bienewald F.
Synlett
1998,
1327
10d
Pelotier B.
Anson MS.
Campbell IB.
Macdonald SJF.
Priem G.
Jackson RFW.
Synlett
2002,
1055
10e
Blum SA.
Bergmann RG.
Ellman JA.
J. Org. Chem.
2003,
68:
150
10f
Weix DJ.
Ellman JA.
Org. Lett.
2003,
5:
1317
10g For a review, see: Bolm C.
Coord. Chem. Rev.
2003,
237:
245 ; and references therein
11 Recently (July 7, 2004 at ISOCS-XXI), Naso reported on an enantioselective synthesis of Sulindac using catalytic amounts of a chiral titanium complex. In this protocol the product is obtained with 77-90% ee.
12
Brunel JM.
Diter P.
Duetsch M.
Kagan HB.
J. Org. Chem.
1995,
60:
8086
13
Pines SH.
Douglas AW.
J. Am. Chem. Soc.
1976,
99:
8119
14
Shuman RF.
Pines SH.
Shearin WE.
Czaja RF.
Abramson NL.
Tul R.
J. Org. Chem.
1977,
42:
1914
15
Experimental Procedure for the Synthesis of (
S
)-(-)-6-Fluoro-3-(4-methanesulfinyl-benzyl)-2-methyl-1
H
-indene (
3):
Fe(acac)3 (7.1 mg, 0.02 mmol) and (S)-4 (18.9 mg, 0.04 mmol) were dissolved in CH2Cl2 (0.7 mL), and the clear red solution was stirred until it turned clear brown (15 min). This solution was then transferred into a 10 mL flask containing a suspension of 4-methoxybenzoic acid (5a, 1.5 mg, 0.01 mmol) in CH2Cl2 (0.5 mL). The resulting mixture was stirred for 10 min. A solution of sulfide 2 (284 mg, 1.00 mmol) in CH2Cl2 (0.8 mL) was then added to the previous solution, followed by dropwise addition of aq H2O2 (35%; 1.20 mmol). The flask was then capped and the reaction mixture slowly stirred at r.t. (approximately 150 rpm). After 16 h, the aqueous layer was separated, the organic layer was dried (MgSO4), filtered, and the solvent was removed in vacuo. Purification by flash chromatography on silica gel (pentane-Et2O 1:2, then EtOAc) led to (S)-3 as a white solid (213 mg, 71% yield, 92% ee). [α]D
25 -70.4 (c 1.0, CHCl3); mp 101-102 °C. IR (KBr): ν = 1038 (S-O) cm-1. 1H NMR (400 MHz, CDCl3): δ = 2.13 (s, 3 H, CH3), 2.69 (s, 3 H, SOCH3), 3.37 (s, 2 H, CH2), 3.91 (s, 2 H, CH2), 6.82-6.95 (m, 2 H), 7.09 (dd, J = 8.6, 2.3 Hz, 1 H), 7.36 (d, J = 8.2 Hz, 2 H), 7.53 (d, J = 8.4 Hz, 2 H) ppm. 13C NMR (100 MHz, CDCl3): δ = 14.2 (CH3), 31.1 (CH2), 42.6 (d, 4
J
CF = 2.3 Hz, CH2), 43.9 (CH3), 110.9 (d, 2
J
CF = 23.7 Hz, CH), 112.5 (d, 2
J
CF = 22.1 Hz, CH), 118.7 (d, 3
J
CF = 8.4 Hz, CH), 123.6 (CH), 129.1 (CH), 133.6 (C), 139.9 (d, 4
J
CF = 3.8 Hz, C), 141.7 (C), 143.0 (C), 143.1 (C), 144.1 (d, 3
J
CF = 8.4 Hz, C), 160.7 (d, 1
J
CF = 241.0 Hz, C) ppm. MS (EI/DIP): m/z (%) = 301 (16) [M+ + H], 300(70) [M+], 285 (11), 283 (30), 236 (12), 153 (26), 148 (11), 147 (100), 146 (20), 138 (13), 137 (34), 107 (18). HPLC conditions (Chiralpak AS column; λ = 254 nm; Temp = 20 °C; flow rate = 0.5 mL/min; heptane-i-PrOH, 7:3): t
R R = 59.8 min, t
R S = 75.0 min.
16 For a recent mechanistic study on iron-catalyzed epoxidations with combinations of acetic acid and hydrogen peroxide, see: Fujita M.
Que L.
Adv. Synth. Catal.
2004,
346:
190
17 Attempts to perform the oxidation of Sulindac sulfide gave unsatisfying results, presumable due to the presence of the carboxylic moiety in the molecule. For the effect of an excess of acid, see ref. 4b.