RSS-Feed abonnieren
DOI: 10.1055/s-2004-832844
H-Bonding Organocatalysed Friedel-Crafts Alkylation of Aromatic and Heteroaromatic Systems with Nitroolefins
Publikationsverlauf
Publikationsdatum:
24. September 2004 (online)
Abstract
Catalytic amounts (10 mol%) of bis-arylureas and -thioureas promote the Friedel-Crafts alkylation with nitroolefins of aromatic and heteroaromatic N-containing derivatives. A sizeable improvement of the yields is noticed on running the reactions in the absence of solvent. When applied to indoles this protocol provides in good to excellent yields and with high selectivity the corresponding Michael adducts. Alkylation at position 2 of the 3-methylindole can be achieved combining solvent-free reaction conditions with microwave (MW) irradiation.
Key words
organocatalysis - nitroolefins - Friedel-Crafts alkylation - indoles
- 1
Dalko PI.Moisan L. Angew. Chem. Int. Ed. 2001, 40: 3727 - 2
Kim SP.Leach AG.Houk KN. J. Org. Chem. 2002, 67: 4250 - 3
Blokzjil W.Engberts JBFN. Angew. Chem., Int. Ed. Engl. 1993, 32: 1545 - 4
Wittkopp A.Schreiner PR. Chem.-Eur. J. 2003, 9: 407 -
5a
Vachal P.Jacobsen EN. J. Am. Chem. Soc. 2002, 124: 10012 -
5b
Vachal P.Jacobsen EN. Org. Lett. 2000, 2: 867 -
5c
Sigman MS.Vachal P.Jacobsen EN. Angew. Chem. Int. Ed. 2000, 39: 1279 - 6
Okino T.Nakamura S.Furukawa T.Takemoto Y. Org. Lett. 2004, 6: 625 -
7a
Maher DJ.Connon SJ. Tetrahedron Lett. 2004, 45: 1301 -
7b
McDougal NT.Schaus SE. J. Am. Chem. Soc. 2003, 125: 12094 - 8
Mase N.Tanaka F.Barbas CF. Angew. Chem. Int. Ed. 2004, 43: 2420 - 9
List B.Pojarliev P.Martin HJ. Org. Lett. 2001, 3: 2423 - 10
Andrey O.Alexakis A.Bernardinelli G. Org. Lett. 2003, 5: 2559 - 11
Mase N.Thayumanavan R.Tanaka F.Barbas CF. Org. Lett. 2004, 6: 2527 - 12
Okino T.Hoashi Y.Takemoto Y. J. Am. Chem. Soc. 2003, 125: 12672 - 13 For a recent review on catalytic stereoselective Friedel-Crafts alkylation reactions, see:
Bandini M.Melloni A.Umani-Ronchi A. Angew. Chem. Int. Ed. 2004, 43: 550 -
14a
Olah GA.Krishnamurty R.Prakash GKS. Friedel-Crafts Alkylation in Comprehensive Organic Synthesis 1st ed, Vol III:Trost BM.Flemming I. Pergamon Press; Oxford: 1991. Chap. 1.8. p.293 -
14b
Roberts RM.Khalaf AA. Friedel-Crafts Alkylation Chemistry Marcel Dekker; New York: 1984. -
14c
Friedel-Crafts Chemistry
Olah GA. Wiley; New York: 1973. - 15
Harrington PE.Kerr MA. Synlett 1996, 1047 - 16
Komoto I.Kobayashi S. Org. Lett. 2002, 4: 1115 - 17
Alam MM.Varala R.Adapa SR. Tetrahedron Lett. 2003, 44: 5115 - 18
Schreiner PR.Wittkopp A. Org. Lett. 2002, 4: 217 -
19a
Schreiner PR. Chem. Soc. Rev. 2003, 32: 289 -
19b
Pihko PM. Angew. Chem. Int. Ed. 2004, 43: 2062 -
19c
Wilcox CS.Kim E.-I.Romano D.Kuo LH.Burt AL.Curran DP. Tetrahedron 1995, 51: 621 - 21
Bordwell FG.Algrim DJ.Harrelson JA. J. Am. Chem. Soc. 1988, 110: 5903 - 22
Scheerder J.Engbersen JFJ.Casnati A.Ungaro R.Reinhoudt DN. J. Org. Chem. 1995, 60: 6448 - 23
Cave GWV.Raston CL.Scott JL. Chem. Commun. 2001, 2159 ; and references therein - 24
Noland WE.Lange RF. J. Am. Chem. Soc. 1959, 81: 1203 - 25
Kleeman A.Engel J.Kutscher B.Reichert D. Pharmaceutical Substances 4th ed.: Thieme; New York: 2001. -
26a
Snyder HR.Katz L. J. Am. Chem. Soc. 1947, 69: 3140 -
26b
Noland WE.Harmatman PJ. J. Am. Chem. Soc. 1954, 76: 3227 -
27a
Bandini M.Melchiorre P.Melloni A.Umani-Ronchi A. Synthesis 2002, 1110 -
27b
Bandini M.Cozzi PG.Giacomini M.Melchiorre P.Selva S.Umani-Ronchi A. J. Org. Chem. 2002, 67: 3700 -
28a
Hagen TG.Koehler KF.Codding PW.Skolnick P.Cook JM. J. Med. Chem. 1990, 33: 2343 -
28b
Rocca P.Marsais F.Godard A.Queguiner G. Tetrahedron 1993, 46: 3325 -
28c
Mérour J.-Y.Mérour A. Synthesis 1994, 767
References
General Experimental Procedure. In a Schlenk tube, a mixture of nitroolefin (a or b, 0.10 mmol), nitrogen-containing aromatic or heteroaromatic compound (1-6, 13-15, 0.15 mmol) and catalyst (I and II, 0.01 mmol) in toluene (1 mL) or without solvent, was vigorously stirred at ambient temperature for the appropriate time (Table
[1]
or Table
[2]
). After completion of the reaction as indicated by 1H NMR, the reaction mixture was diluted with H2O and extracted with Et2O. The organic phases were combined, dried over Na2SO4 and concentrated under reduced pressure, and the crude mixture was purified by column chromatography. All the new compounds gave satisfactory analytical and spectral data. Typical data for representative compounds:
Analytical data of compound 10a: IR (CCl4): 3047, 2893, 1614, 1552, 1376, 1277, 895 cm-1. 1H NMR (300 MHz, CDCl3): δ = 1.05 (t, 3
J = 7.1 Hz, 6 H, 2 × CH
3CH2), 3.24 (c, 3
J = 7.2 Hz, 4 H, 2 × CH3CH
2), 4.71 (dd, 3
J = 8.8 Hz, 3
J = 7.5 Hz, 1 H, NO2CH2CH), 4.78-4.93 (m, 2 H, NO2CH2), 6.53 (d, 3
J = 8.7 Hz, 2 H, Ph), 6.97 (d, 3
J = 8.7 Hz, 2 H, Ph), 7.08-7.40 (m, 5 H, Ph). 13C NMR (400 MHz, CDCl3): δ = 12.48 (2 × CH3CH2), 44.25 (NO2CH2
CH), 48.21 (CH2NCH2), 79.66 (NO2CH2), 111.85 (CPh), 125.40 (Cq
Ph), 127.26, 127.50, 127.57, 140.03, 128.55, 128.86, (5 × CPh) 139.97, 147.01 (2 × Cq
Ph). MS (70 eV): m/z (%) = 298 [M+], 284 (17), 283 (86), 252 (50), 238 (100), 237 (19), 236 (56), 208 (28). HRMS: m/z calcd for C18H22N2O2: 298.1681; found: 298.1684.
Analytical data of compound 18b: IR (CCl4): 3061, 2860, 1555, 1468, 1426, 1377 cm-1. 1H NMR (400 MHz, CDCl3): δ = 0.83 (t, J = 7.1 Hz, 3 H, CH2CH
3), 1.12-1.36 (m, 6 H, 3 × CH2), 1.68-1.92 (m, 2 H, NO2CH2CHCH
2), 3.76 (s, 3 H, NCH3), 3.70-3.81 (m, 1 H, NO2CH2CH), 4.61 (dd, 2
J = 11.9 Hz, 3
J = 7.8 Hz, 1 H, NO2CHH), 4.66 (dd, 2
J = 11.9 Hz, 3
J = 7.4 Hz, 1 H, NO2CHH), 6.89 (s, 1 H, CH3NCH), 7.13 (t, 3
J = 7.8 Hz, 1 H, Ph), 7.25 (t, 3
J = 7.8 Hz, 1 H, Ph), 7.31 (d, 3
J = 8.2 Hz, 1 H, Ph), 7.61 (d, 3
J = 8.2 Hz, 1 H, Ph). 13C NMR (400 MHz, CDCl3): δ = 13.99 (CH2
CH3), 22.43, 26.88, 31.61, 32.49 (4 × CH2), 32.77 (NCH3), 36.29 (NO2CH2
CH), 80.72 (NO2CH2), 109.56 (CPh), 112.54 (Cq
Ph), 118.83, 119.20, 121.92 (3 × CPh), 126.55 (CH3NCHC), 126.64, 137.23 (2 × Cq
Ph). MS (70 eV): m/z (%) = 274 [M+], 228 (17), 214 (42), 171 (34), 158 (21), 157 (100), 156 (16). HRMS: m/z calcd for C16H22N2O2: 274.1681; found: 274.1687.