References
1a
Curran DP. In
Comprehensive Organic Synthesis
Vol. 4:
Trost BM.
Fleming I.
Paquette LA.
Pergamon;
Oxford:
1991.
p.815
1b
Giese B.
Kopping B.
Göbel T.
Thoma G.
Dickhaut J.
Kulicke KJ.
Trach F. In
Organic Reactions
Vol. 48:
Paquette LA.
Wiley;
New York:
1996.
p.308
1c
Beckwith ALJ.
Hay BD.
J. Am. Chem. Soc.
1989,
111:
230
1d
Beckwith ALJ.
Hay BD.
J. Am. Chem. Soc.
1989,
111:
2674
1e
Beckwith ALJ.
Raner KD.
J. Org. Chem.
1992,
57:
4954
1f
Beckwith ALJ.
Tetrahedron
1981,
37:
3073
2
Srikrishna A. In
Radicals in Organic Synthesis
Vol. 2:
Renaud P.
Sibi MP.
Wiley-VCH;
Weinheim:
2001.
p.151
3a
Ishibashi H.
Sato T.
Ikeda M.
Synthesis
2002,
695
3b
Chatgilialoglu C.
Ferreri C.
Guerra M.
J. Am. Chem. Soc.
2002,
124:
10765
4
Bailey WF.
Longstaff SC.
Org. Lett.
2002,
3:
2217
5
Fernández-Mateos A.
Martín de la Nava E.
Pascual Coca G.
Ramos Silvo A.
Rubio González R.
Org. Lett.
1999,
1:
607
6a
RajanBabu TV.
Nugent WA.
J. Am. Chem. Soc.
1994,
116:
986
6b
Nugent WA.
RajanBabu TV.
J. Am. Chem. Soc.
1988,
110:
8561
7a
Gansäuer A.
Bluhm H.
Chem. Rev.
2000,
100:
2771
7b
Gansäuer A.
Lauterbach T.
Narayan S.
Angew. Chem. Int. Ed.
2003,
42:
5556
7c
Gansäuer A.
Rinker B.
Pierobon M.
Grimme S.
Gerenkamp M.
Mück-Lichtenfeld C.
Angew. Chem. Int. Ed.
2003,
42:
3687
7d
Gansäuer A.
Pierobon M.
Bluhm H.
Synthesis
2001,
2500
7e
Gansäuer A.
Bluhm H.
Pierobon M.
J. Am. Chem. Soc.
1998,
120:
12849
8a
Yamada H.
Hasegawa T.
Tanaka H.
Takahashi T.
Synlett
2001,
1935
8b
Fuse S.
Hanochi M.
Doi T.
Takahashi T.
Tetrahedron Lett.
2004,
45:
1961
8c
Barrero AF.
Cuerva JM.
Herrador MM.
Valdivia MV.
J. Org. Chem.
2001,
66:
4074
8d
Barrero AF.
Oltra JE.
Cuerva JM.
Rosales A.
J. Org. Chem.
2002,
67:
2566
8e
Barrero AF.
Rosales A.
Cuerva JM.
Oltra JE.
Org. Lett.
2003,
5:
1935
8f
Haïdour A.
Oltra JE.
Barrero AF.
Cardenas DJ.
Cuerva JM.
Chem.-Eur. J.
2004,
10:
1778
8g
Ruano G.
Grande M.
Anaya J.
J. Org. Chem.
2002,
67:
8243
9x The epoxyalkenes 1-4 were obtained by a Wittig reaction of the aldehydes I (n = 0, 1, 2, 3) followed by selective epoxidation with mCPBA in CH2Cl2 at -30 °C. The starting aldehydes I (n = 0, 1, 2, 3) have been reported in the literature
9a (i) For aldehydes I, n = 0, see: Geyde RN.
Aura PC.
Deck K.
Can. J. Chem.
1971,
49:
1764
9b (ii) For aldehyde I, n = 1, see: Fernández-Mateos A.
Lopéz Barba A.
J. Org. Chem.
1995,
60:
3580
9c (iii) For aldehyde I, n = 2, see: Fernández-Mateos A.
Pascual Coca G.
Rubio González R.
Tapia Hernández C.
J. Org. Chem.
1996,
61:
9097
9d (iv) The aldehyde I, n = 3, was obtained from I, n = 2, by Wittig reaction with Ph3P=CHOCH3, followed by treatment with HClO4 (60%) in THF. All compounds synthesized are racemic, although only one enantiomer is depicted (Figure
[3]
).
9e The epoxyketones 6-9 were obtained by a three-step sequence from the aldehydes I, n = 0, 1, 2, 3: i) Grignard reaction with vinyl magnesium bromide, ii) oxidation with Dess-Martin reagent, and iii) epoxidation with mCPBA.
9f The structure of epoxyketones 6-10, in which the oxiranic oxygen and the side chain is cis, is based on spectroscopic data and comparison with the epoxy compound described by K. Mori et al., whose structure was determined by X-ray. See: Mori K.
Aki S.
Kido M.
Liebigs Ann. Chem.
1993,
83
10
General Procedure. A mixture of Cp2TiCl2 (2.2 mmol) and Zn (3.0 mmol) in strictly deoxygenated THF (4 mL) was stirred at r.t. until the red solution turned green. In a separate flask, the epoxy compound (1.0 mmol) was dissolved in strictly deoxygenated THF (10 mL). The green Ti(III) solution was slowly added via cannula to the epoxide solution. After 30 min, an excess of sat. NaH2PO3 was added, and the mixture was stirred for 20 min. The product was extracted into Et2O and washed with sat. NaHCO3 and H2O. After removal of the solvent, the crude product was purified by flash chromatography. All homolytic cleavages were absolutely selective and always afforded the tertiary radical.
11 The relative configuration of the newly created stereocenters has been assigned by spectroscopic data and H-C correlation, except for structures 7b, 8a, and 10b, whose crystallographic data have been deposited with the Cambridge Crystallographic Data Centre as supplementary publication numbers CCDC 234516, 2345517 and 234515, respectively. Spectroscopic data of three selected compounds:
1-(2-Hydroxy-1,5,5-trimethylbicyclo[4.1.0]hept-7-yl)-propan-2-one (
5a). IR (film) ν = 3430, 2902, 1715, 1040 cm-1. 1H NMR (CDCl3) δ = 0.39 (1 H, d, J = 5.9 Hz), 0.87 (3 H, s), 0.90 (1 H, m), 1.00 (3 H, s), 1.01 (3 H, s), 0.90-1.30 (4 H, m), 2.13 (3 H, s), 2.13 (1 H, m), 2.79 (1 H, dd, J = 4.2, J′ = 18.8 Hz), 3.81 (1 H, t, J = 6.2 Hz) ppm. 13C NMR (CDCl3) δ = 16.29 (CH), 19.69 (CH3), 26.83 (C), 27.01 (CH2), 27.93 (C), 28.38 (CH3), 29.48 (CH3), 31.38 (CH3), 33.39 (CH2), 39.54 (CH), 42.91 (CH2), 71.96 (CH-O), 210.06 (C=O) ppm. MS (EI): m/z (%) = 210 (19) [M+], 177 (9), 153 (53), 97 (100), 71 (95). HRMS (IE): m/z calcd for C13H22O2 [M+]: 210.1619. Found: 210.1620.
7-Hydroxy-1,4,4,7a-tetramethyloctahydroinden-2-one (
7c). IR (film) ν = 3453, 2955, 1732, 1051 cm-1. 1H NMR (CDCl3) δ = 0.81 (3 H, s), 0.90 (3 H, s), 0.94 (3 H, s), 1.09 (3 H, d, J = 6.9 Hz), 1.20-1.70 (4 H, m), 1.52 (1 H, dd, J = 7.7 Hz, J′ = 14 Hz), 2.05 (2 H, m), 2.18 (1 H, dd, J = 7.7 Hz, J′ = 18 Hz), 3.60 (1 H, dd, J = 5.2 Hz, J′ = 10.3 Hz) ppm. 13C NMR (CDCl3) δ = 8.58 (CH3), 9.54 (CH3), 20.62 (CH3), 29.32 (CH2), 31.48 (C), 32.75 (CH3), 35.17 (CH2), 39.79 (CH2), 46.75 (C), 52.01 (CH), 59.23 (CH), 79.91 (CH-O), 217.59 (C=O) ppm. MS (EI): m/z (%) = 210 (41) [M+], 177 (10), 139 (67), 110 (54), 95 (100), 69 (48), 55 (51). HRMS (IE): m/z calcd for C13H22O2 [M+]: 210.1620. Found: 210.1623.
Acetic Acid 4,4,10a-Trimethyl-8-oxododecahydrobenzo-cycloocten-1-yl Ester (
9b). IR (film) ν = 2953, 1734, 1697, 1244 cm-1. 1H NMR (CDCl3) δ = 0.80 (3 H, s), 0.83 (3 H, s), 0.92 (3 H, s), 1.20-1.70 (11 H, m), 2.04 (3 H, s), 2.25 (2 H, m), 2.66 (2 H, m), 4.78 (1 H, dd, J = 5.6 Hz, J′ = 10 Hz) ppm. 13C NMR (CDCl3) δ = 17.60 (CH3), 21.12 (CH3), 21.27 (CH3), 24.10 (CH2), 25.43 (CH2), 31.25 (CH2), 31.70 (CH2), 31.85 (CH3), 34.81 (C), 38.72 (CH2), 40.41 (CH2), 40.56 (CH2), 41.15 (C), 49.74 (CH), 74.22 (CH-O), 170.30 (C=O), 216.62 (C=O) ppm. MS (EI): m/z (%) = 220 (9) [M+ - 60], 205 (16), 187 (9), 150 (17), 135 (11), 109 (25), 95 (30), 81 (13), 67 (41), 55 (100),(54), 55 (100). HRMS (IE): m/z calcd for C17HO3 [M+]: 280.2038. Found: 280.2033.
12
Moisan L.
Hardouin C.
Rousseau B.
Doris E.
Tetrahedron Lett.
2001,
43:
2013
13 The diastereomer the 6 afforded exclusively bicyclic diol 6a′ in 70% yield (Scheme
[6]
).
14
Yet L.
Tetrahedron
1999,
55:
9349
15
Beckwith AL.
Schiesser CH.
Tetrahedron
1985,
41:
3925