References
-
1a
Curran DP. In
Comprehensive Organic Synthesis
Vol. 4:
Trost BM.
Fleming I.
Paquette LA.
Pergamon;
Oxford:
1991.
p.815
-
1b
Giese B.
Kopping B.
Göbel T.
Thoma G.
Dickhaut J.
Kulicke KJ.
Trach F. In
Organic Reactions
Vol. 48:
Paquette LA.
Wiley;
New York:
1996.
p.308
-
1c
Beckwith ALJ.
Hay BD.
J. Am. Chem. Soc.
1989,
111:
230
-
1d
Beckwith ALJ.
Hay BD.
J. Am. Chem. Soc.
1989,
111:
2674
-
1e
Beckwith ALJ.
Raner KD.
J. Org. Chem.
1992,
57:
4954
-
1f
Beckwith ALJ.
Tetrahedron
1981,
37:
3073
- 2
Srikrishna A. In
Radicals in Organic Synthesis
Vol. 2:
Renaud P.
Sibi MP.
Wiley-VCH;
Weinheim:
2001.
p.151
-
3a
Ishibashi H.
Sato T.
Ikeda M.
Synthesis
2002,
695
-
3b
Chatgilialoglu C.
Ferreri C.
Guerra M.
J. Am. Chem. Soc.
2002,
124:
10765
- 4
Bailey WF.
Longstaff SC.
Org. Lett.
2002,
3:
2217
- 5
Fernández-Mateos A.
Martín de la Nava E.
Pascual Coca G.
Ramos Silvo A.
Rubio González R.
Org. Lett.
1999,
1:
607
-
6a
RajanBabu TV.
Nugent WA.
J. Am. Chem. Soc.
1994,
116:
986
-
6b
Nugent WA.
RajanBabu TV.
J. Am. Chem. Soc.
1988,
110:
8561
-
7a
Gansäuer A.
Bluhm H.
Chem. Rev.
2000,
100:
2771
-
7b
Gansäuer A.
Lauterbach T.
Narayan S.
Angew. Chem. Int. Ed.
2003,
42:
5556
-
7c
Gansäuer A.
Rinker B.
Pierobon M.
Grimme S.
Gerenkamp M.
Mück-Lichtenfeld C.
Angew. Chem. Int. Ed.
2003,
42:
3687
-
7d
Gansäuer A.
Pierobon M.
Bluhm H.
Synthesis
2001,
2500
-
7e
Gansäuer A.
Bluhm H.
Pierobon M.
J. Am. Chem. Soc.
1998,
120:
12849
-
8a
Yamada H.
Hasegawa T.
Tanaka H.
Takahashi T.
Synlett
2001,
1935
-
8b
Fuse S.
Hanochi M.
Doi T.
Takahashi T.
Tetrahedron Lett.
2004,
45:
1961
-
8c
Barrero AF.
Cuerva JM.
Herrador MM.
Valdivia MV.
J. Org. Chem.
2001,
66:
4074
-
8d
Barrero AF.
Oltra JE.
Cuerva JM.
Rosales A.
J. Org. Chem.
2002,
67:
2566
-
8e
Barrero AF.
Rosales A.
Cuerva JM.
Oltra JE.
Org. Lett.
2003,
5:
1935
-
8f
Haïdour A.
Oltra JE.
Barrero AF.
Cardenas DJ.
Cuerva JM.
Chem.-Eur. J.
2004,
10:
1778
-
8g
Ruano G.
Grande M.
Anaya J.
J. Org. Chem.
2002,
67:
8243
-
9x The epoxyalkenes 1-4 were obtained by a Wittig reaction of the aldehydes I (n = 0, 1, 2, 3) followed by selective epoxidation with mCPBA in CH2Cl2 at -30 °C. The starting aldehydes I (n = 0, 1, 2, 3) have been reported in the literature
-
9a (i) For aldehydes I, n = 0, see: Geyde RN.
Aura PC.
Deck K.
Can. J. Chem.
1971,
49:
1764
-
9b (ii) For aldehyde I, n = 1, see: Fernández-Mateos A.
Lopéz Barba A.
J. Org. Chem.
1995,
60:
3580
-
9c (iii) For aldehyde I, n = 2, see: Fernández-Mateos A.
Pascual Coca G.
Rubio González R.
Tapia Hernández C.
J. Org. Chem.
1996,
61:
9097
-
9d
(iv) The aldehyde I, n = 3, was obtained from I, n = 2, by Wittig reaction with Ph3P=CHOCH3, followed by treatment with HClO4 (60%) in THF. All compounds synthesized are racemic, although only one enantiomer is depicted (Figure
[3]
).
-
9e
The epoxyketones 6-9 were obtained by a three-step sequence from the aldehydes I, n = 0, 1, 2, 3: i) Grignard reaction with vinyl magnesium bromide, ii) oxidation with Dess-Martin reagent, and iii) epoxidation with mCPBA.
-
9f The structure of epoxyketones 6-10, in which the oxiranic oxygen and the side chain is cis, is based on spectroscopic data and comparison with the epoxy compound described by K. Mori et al., whose structure was determined by X-ray. See: Mori K.
Aki S.
Kido M.
Liebigs Ann. Chem.
1993,
83
- 12
Moisan L.
Hardouin C.
Rousseau B.
Doris E.
Tetrahedron Lett.
2001,
43:
2013
- 14
Yet L.
Tetrahedron
1999,
55:
9349
- 15
Beckwith AL.
Schiesser CH.
Tetrahedron
1985,
41:
3925
10
General Procedure. A mixture of Cp2TiCl2 (2.2 mmol) and Zn (3.0 mmol) in strictly deoxygenated THF (4 mL) was stirred at r.t. until the red solution turned green. In a separate flask, the epoxy compound (1.0 mmol) was dissolved in strictly deoxygenated THF (10 mL). The green Ti(III) solution was slowly added via cannula to the epoxide solution. After 30 min, an excess of sat. NaH2PO3 was added, and the mixture was stirred for 20 min. The product was extracted into Et2O and washed with sat. NaHCO3 and H2O. After removal of the solvent, the crude product was purified by flash chromatography. All homolytic cleavages were absolutely selective and always afforded the tertiary radical.
11 The relative configuration of the newly created stereocenters has been assigned by spectroscopic data and H-C correlation, except for structures 7b, 8a, and 10b, whose crystallographic data have been deposited with the Cambridge Crystallographic Data Centre as supplementary publication numbers CCDC 234516, 2345517 and 234515, respectively. Spectroscopic data of three selected compounds:
1-(2-Hydroxy-1,5,5-trimethylbicyclo[4.1.0]hept-7-yl)-propan-2-one (
5a). IR (film) ν = 3430, 2902, 1715, 1040 cm-1. 1H NMR (CDCl3) δ = 0.39 (1 H, d, J = 5.9 Hz), 0.87 (3 H, s), 0.90 (1 H, m), 1.00 (3 H, s), 1.01 (3 H, s), 0.90-1.30 (4 H, m), 2.13 (3 H, s), 2.13 (1 H, m), 2.79 (1 H, dd, J = 4.2, J′ = 18.8 Hz), 3.81 (1 H, t, J = 6.2 Hz) ppm. 13C NMR (CDCl3) δ = 16.29 (CH), 19.69 (CH3), 26.83 (C), 27.01 (CH2), 27.93 (C), 28.38 (CH3), 29.48 (CH3), 31.38 (CH3), 33.39 (CH2), 39.54 (CH), 42.91 (CH2), 71.96 (CH-O), 210.06 (C=O) ppm. MS (EI): m/z (%) = 210 (19) [M+], 177 (9), 153 (53), 97 (100), 71 (95). HRMS (IE): m/z calcd for C13H22O2 [M+]: 210.1619. Found: 210.1620.
7-Hydroxy-1,4,4,7a-tetramethyloctahydroinden-2-one (
7c). IR (film) ν = 3453, 2955, 1732, 1051 cm-1. 1H NMR (CDCl3) δ = 0.81 (3 H, s), 0.90 (3 H, s), 0.94 (3 H, s), 1.09 (3 H, d, J = 6.9 Hz), 1.20-1.70 (4 H, m), 1.52 (1 H, dd, J = 7.7 Hz, J′ = 14 Hz), 2.05 (2 H, m), 2.18 (1 H, dd, J = 7.7 Hz, J′ = 18 Hz), 3.60 (1 H, dd, J = 5.2 Hz, J′ = 10.3 Hz) ppm. 13C NMR (CDCl3) δ = 8.58 (CH3), 9.54 (CH3), 20.62 (CH3), 29.32 (CH2), 31.48 (C), 32.75 (CH3), 35.17 (CH2), 39.79 (CH2), 46.75 (C), 52.01 (CH), 59.23 (CH), 79.91 (CH-O), 217.59 (C=O) ppm. MS (EI): m/z (%) = 210 (41) [M+], 177 (10), 139 (67), 110 (54), 95 (100), 69 (48), 55 (51). HRMS (IE): m/z calcd for C13H22O2 [M+]: 210.1620. Found: 210.1623.
Acetic Acid 4,4,10a-Trimethyl-8-oxododecahydrobenzo-cycloocten-1-yl Ester (
9b). IR (film) ν = 2953, 1734, 1697, 1244 cm-1. 1H NMR (CDCl3) δ = 0.80 (3 H, s), 0.83 (3 H, s), 0.92 (3 H, s), 1.20-1.70 (11 H, m), 2.04 (3 H, s), 2.25 (2 H, m), 2.66 (2 H, m), 4.78 (1 H, dd, J = 5.6 Hz, J′ = 10 Hz) ppm. 13C NMR (CDCl3) δ = 17.60 (CH3), 21.12 (CH3), 21.27 (CH3), 24.10 (CH2), 25.43 (CH2), 31.25 (CH2), 31.70 (CH2), 31.85 (CH3), 34.81 (C), 38.72 (CH2), 40.41 (CH2), 40.56 (CH2), 41.15 (C), 49.74 (CH), 74.22 (CH-O), 170.30 (C=O), 216.62 (C=O) ppm. MS (EI): m/z (%) = 220 (9) [M+ - 60], 205 (16), 187 (9), 150 (17), 135 (11), 109 (25), 95 (30), 81 (13), 67 (41), 55 (100),(54), 55 (100). HRMS (IE): m/z calcd for C17HO3 [M+]: 280.2038. Found: 280.2033.
13 The diastereomer the 6 afforded exclusively bicyclic diol 6a′ in 70% yield (Scheme
[6]
).