Synlett 2004(15): 2697-2700  
DOI: 10.1055/s-2004-835626
LETTER
© Georg Thieme Verlag Stuttgart · New York

Iron-Catalyzed Coupling Reaction between 1,1-Dichloro-1-alkenes and Grignard Reagents

Mickaël Dos Santosa, Xavier Francka, Reynald Hocquemillera, Bruno Figadère*a, Jean-François Peyratb, Olivier Provot b, Jean-Daniel Brion b, Mouâd Alami* b
a Laboratoire de Pharmacognosie, BioCIS - CNRS (UMR 8076), Université Paris-Sud, Faculté de Pharmacie, rue Jean-Baptiste Clément, 92296 Châtenay-Malabry, France
Fax: +33(1)46835399; e-Mail: bruno.figadere@cep.u-psud.fr;
b Laboratoire de Chimie Thérapeutique, BioCIS - CNRS (UMR 8076), Université Paris-Sud, Faculté de Pharmacie, rue Jean-Baptiste Clément, 92296 Châtenay-Malabry, France
e-Mail: mouad.alami@cep.u-psud.fr;
Further Information

Publication History

Received 6 September 2004
Publication Date:
22 October 2004 (online)

Abstract

This letter reports the coupling reaction of Grignard ­reagents with 1,1-dichloro-1-alkenes in the presence of the environmentally friendly iron(III) catalyst. This non-toxic procedure is general and provides the di-coupled products as the major compounds. The scope and limitations of this new reaction are described.

13

Typical Procedure and Selected Spectroscopic Data: In a round-bottomed flask, under a nitrogen atmosphere, containing the 1,1-dichloro-1-alkene (1.00 mmol) and Fe(acac)3 (35.3 mg, 0.10 mmol) was added THF (1.2 mL). The reaction mixture was cooled to -30 °C and the desired Grignard reagent (3.00 mmol of typically 1 M solution in THF) was added dropwise. The red colored solution turned dark brown to black (depending on the Grignard reagent). The reaction mixture was stirred for 1.5 h to 18 h, until the disappearance of starting material as judged by TLC. A 1 M aq HCl solution (5.0 mL) was then added, and the two layers were separated. After extraction of the organic layer by EtOAc (2 × 20 mL), the combined organic layers were washed three times with H2O, then dried over MgSO4, filtered, and concentrated under vacuum. The crude residue was then purified by silica gel column chromatography to yield the expected adducts (see in the text for yields).
1,1-Dibutyl-2-(4-methoxyphenyl)ethylene (2): 1H NMR (200 MHz): δ = 7.14 (d, J = 8.7 Hz, 2 H), 6.86 (d, J = 8.8 Hz, 2 H), 6.20 (s, 1 H), 3.81 (s, 3 H), 2.16 (m, 4 H), 1.42 (m, 8 H), 0.94 (t, J = 7.1 Hz, 3 H), 0.90 (t, J = 7.1 Hz, 3 H) ppm. 13C NMR (50 MHz): δ = 157.7, 142.6, 131.4, 129.7, 124.1, 113.5, 55.2, 37.1, 30.5, 30.4, 22.9, 22.6, 14.0, 13.9 ppm.
1,1-Dibutyl-2-(2-quinolyl)ethylene (5a): 1H NMR (200 MHz): δ = 8.04 (d, J = 8.4 Hz, 2 H), 7.74 (d, J = 8.1 Hz, 1 H), 7.66 (td, J = 8.2, 1.1 Hz, 1 H), 7.45 (t, J = 7.4 Hz, 1 H), 7.30 (d, J = 8.4 Hz, 1 H), 6.47 (s, 1 H), 2.67 (t, J = 7.3 Hz, 2 H), 2.28 (t, J = 6.9 Hz, 2 H), 1.60 (m, 4 H), 1.37 (m, 4 H), 0.97 (t, J = 7.4 Hz, 3 H), 0.93 (t, J = 7.3 Hz, 3 H) ppm. 13C NMR (50 MHz): δ = 157.6, 151.3, 148.0, 135.4, 129.2, 129.1, 127.2, 126.2, 125.6, 124.4, 122.4, 38.1, 31.3, 30.6, 30.3, 23.0, 22.6, 14.0, 13.9 ppm. ESI-MS: m/z (%) = 268 (100) [MH+].
1,1-Diethyl-2-(2-quinolyl)ethylene (5b): 1H NMR (200 MHz): δ = 8.07 (d, J = 6.9 Hz, 1 H), 8.02 (d, J = 6.4 Hz, 1 H), 7.73 (d, J = 8.1 Hz, 1 H), 7.66 (td, J = 7.1, 1.5 Hz, 1 H), 7.45 (t, J = 7.4 Hz, 1 H), 7.31 (d, J = 8.6 Hz, 1 H), 6.47 (br s, 1 H), 2.65 (q, J = 7.6 Hz, 2 H), 2.30 (qd, J = 7.4, 1.1 Hz, 2 H), 1.19 (t, J = 7.2 Hz, 3 H), 1.16 (t, J = 7.3 Hz, 3 H) ppm. 13C NMR (50 MHz): δ = 157.5, 153.4, 147.8, 135.6, 129.2, 129.0, 127.2, 126.2, 125.6, 123.1, 122.2, 30.3, 24.6, 12.9, 12.5 ppm. ESI-MS: m/z (%) = 234 (35) {M + Na+], 212 (100) [MH+].
1,1-Di- p -toluyl-2-(2-quinolyl)ethylene (5c): 1H NMR (200 MHz): δ = 8.04 (d, J = 8.8 Hz, 1 H), 7.72 (d, J = 8.7 Hz, 1 H), 7.64 (m, 2 H), 7.44 (t, J = 7.3 Hz, 1 H), 7.31 (m, 3 H), 7.15 (m, 6 H), 6.84 (d, J = 8.8 Hz, 1 H), 2.40 (s, 3 H), 2.38 (s, 3 H) ppm. 13C NMR (50 MHz): δ = 157.5, 148.1, 147.3, 139.8, 138.1, 137.8, 136.9, 134.7, 130.3, 129.3, 128.9, 128.1, 127.9, 127.3, 126.5, 126.0, 122.0, 21.3, 21.1 ppm. ESI-MS: m/z (%) = 358 (10) [M + Na+], 336 (100) [MH+].
1,1-Dithienyl-2-yl-2-(2-quinolyl)ethylene (5d): 1H NMR (200 MHz): δ = 8.03 (d, J = 8.2 Hz, 1 H), 7.80 (d, J = 8.7 Hz, 1 H), 7.69 (d, J = 7.6 Hz, 1 H), 7.65 (dd, J = 7.1, 1.6 Hz, 1 H), 7.45 (m, 3 H), 7.32 (dd, J = 5.0, 1.9 Hz, 1 H), 7.08 (s, 1 H), 7.05 (m, 3 H), 6.91 (d, J = 8.7 Hz, 1 H) ppm. 13C NMR (50 MHz): δ = 156.1, 147.9, 146.4, 139.3, 135.0, 133.1, 129.4, 129.1, 129.0, 128.9, 127.5, 127.4, 127.3, 127.1, 126.6, 126.5, 126.4, 121.5 ppm. ESI-MS: m/z (%) = 342 (15) [M + Na], 320 (100) [MH+].
1,1-Cyclohexyliden-2-(2-quinolyl)ethylene (5e): 1H NMR (200 MHz): δ = 8.05 (d, J = 8.5 Hz, 2 H), 7.75 (d, J = 7.9 Hz, 1 H), 7.67 (td, J = 8.3, 1.3 Hz, 1 H), 7.46 (t, J = 7.8 Hz, 1 H), 7.32 (d, J = 8.5 Hz, 1 H), 6.48 (s, 1 H), 2.75 (m, 2 H), 2.36 (t, J = 5.6 Hz, 2 H), 1.66 (m, 6 H) ppm. 13C NMR (50 MHz): δ = 157.6, 149.9, 147.9, 135.7, 129.3, 129.1, 127.3, 126.3, 125.8, 122.6, 122.4, 38.1, 29.9, 28.6, 27.8, 26.5 ppm. ESI-MS: m/z (%) = 224 (100) [MH+].
4-Benzyloxy-1,1-dibutylbut-1-ene (8a): 1H NMR (200 MHz): δ = 7.36 (m, 5 H), 5.13 (br t, J = 7.0 Hz, 1 H), 4.53 (s, 2 H), 3.47 (t, J = 7.2 Hz, 2 H), 2.36 (q, J = 7.1 Hz, 2 H), 2.00 (m, 4 H), 1.33 (m, 8 H), 0.91 (t, J = 6.8 Hz, 6 H) ppm. 13C NMR (50 MHz): δ = 142.0, 138.7, 128.3, 127.6, 127.4, 119.9, 72.8, 70.5, 36.6, 30.7, 30.4, 30.0, 28.5, 22.9, 22.5, 14.0 ppm. ESI-MS: m/z (%) = 297 (81) [M + Na+], 275 (16) [MH+].
4-Benzyloxy-1,1-didodecylbut-1-ene (8b): 1H NMR (200 MHz): δ = 7.34 (m, 5 H), 5.12 (br t, J = 7.0 Hz, 1 H), 4.56 (s, 2 H), 3.46 (t, J = 7.2 Hz, 2 H), 2.35 (q, J = 7.1 Hz, 2 H), 2.00 (m, 4 H), 1.27 (m, 40 H), 0.89 (t, J = 6.4 Hz, 6 H) ppm. 13C NMR (50 MHz): δ = 142.1, 138.7, 128.3, 127.6, 127.4, 119.9, 72.8, 70.5, 37.0, 31.9, 29.8, 29.7, 29.5, 29.4, 28.5, 28.2, 22.7, 14.1 ppm. ESI-MS: m/z (%) = 499 (100) [MH+].