RSS-Feed abonnieren
DOI: 10.1055/s-2004-835648
Manganese(III)-Mediated Radical Reactions in Carbohydrate Chemistry: A New Route to 3-Deoxy-d-manno-oct-2-ulosonic Acid (KDO)
Publikationsverlauf
Publikationsdatum:
08. November 2004 (online)
Abstract
An acyclic alkene derived from a carbohydrate is employed as a substrate for manganese-mediated radical reactions for the first time. The addition of malonate is interesting for the mechanism of such reactions, whereas acetic acid as radical precursor affords lactones in excellent yield. The main diastereomer was easily separated and represents a key intermediate in the synthesis of KDO.
Key words
carbohydrates - lactones - natural products - radical reactions - transition metals
- Recent reviews:
-
1a
Snider BB. Chem. Rev. 1996, 96: 339 -
1b
Melikyan GG. Org. React. 1997, 49: 427 -
1c
Linker T. J. Prakt. Chem. 1997, 339: 488 -
1d
Snider BB. In Radicals in Organic Synthesis Vol. 1:Renaud P.Sibi M. Wiley-VCH; Weinheim: 2001. p.198 - Recent reviews:
-
2a
Nair V.Mathew J.Prabhakaran J. Chem. Soc. Rev. 1997, 127 -
2b
Linker T. In Radicals in Organic Synthesis Vol. 1:Renaud P.Sibi M. Wiley-VCH; Weinheim: 2001. p.219 -
2c
Nair T.Balagopal L.Rajan R.Mathew J. Acc. Chem. Res. 2004, 37: 21 -
3a
Linker T.Hartmann K.Sommermann T.Scheutzow D.Ruckdeschel E. Angew. Chem., Int. Ed. Engl. 1996, 35: 1730 -
3b
Linker T.Sommermann T.Kahlenberg F. J. Am. Chem. Soc. 1997, 119: 9377 -
3c
Gyóllai V.Schanzenbach D.Somsák L.Linker T. Chem. Commun. 2002, 1294 -
3d
Linker T. J. Organomet. Chem. 2002, 661: 159 - 4 Recent Review:
Li L.-S.Wu Y.-L. Curr. Org. Chem. 2003, 7: 447 - 5
Aspinall GO.Carpenter RC.Khondo L. Carbohydr. Res. 1987, 165: 281 -
6a
Allegretti M.D’Annibale A.Trogolo C. Tetrahedron 1993, 49: 10705 -
6b
Bosman C.D’Annibale A.Resta S.Trogolo C. Tetrahedron 1994, 50: 13847 -
6c
Linker T.Linker U. Angew. Chem. Int. Ed. 2000, 39: 902 -
7a
Linker U.Kersten B.Linker T. Tetrahedron 1995, 51: 9917 -
7b
Linker T.Kersten B.Linker U.Peters K.Peters E.-M.von Schnering HG. Synlett 1996, 468 -
8a
Heiba EI.Dessau RM.Rodewald PG. J. Am. Chem. Soc. 1974, 96: 7977 -
8b
Fristad WE.Peterson JR. J. Org. Chem. 1985, 50: 10 -
8c
Surzur J.-M.Bertrand MP. Pure Appl. Chem. 1988, 60: 1659 -
9a
Julia M. Acc. Chem. Res. 1971, 4: 386 -
9b
Curran DP.Morgan TM.Schwartz E.Snider BB.Dombroski MA. J. Am. Chem. Soc. 1991, 113: 6607 - Reviews on stereoselective radical reactions:
-
10a
Curran DP.Porter NA.Giese B. Stereochemistry of Radical Reactions VCH; Weinheim: 1996. -
10b
Giese B. In Radicals in Organic Synthesis Vol. 1:Renaud P.Sibi M. Wiley-VCH; Weinheim: 2001. p.381 -
10c
Sibi MP.Manyem S.Zimmerman J. Chem. Rev. 2003, 103: 3263 - 11
Peters K.Peters E.-M.Hartmann K.Kim BG.Linker T. Z. Kristallogr. - New Cryst. Struct. 2004, 219: in press -
13a
Collins PM.Overend WG.Shing T. J. Chem. Soc., Chem. Commun. 1981, 1139 -
13b
Railton CJ.Clive DLJ. Carbohydr. Res. 1996, 281: 69
References
A solution of 632 mg (2.00 mmol) of alkene 2 and 1.00 g of potassium acetate in 10 mL of HOAc was heated to 90 °C under argon atmosphere. After the addition of 2.14 g (8.00 mmol, 4.0 equiv) of manganese(III) acetate dihydrate, the solution was stirred at this temperature for 60 h. The mixture was diluted with 300 mL of ice water, extracted with 8 × 50 mL of CH2Cl2 and the combined organic phases were washed with 100 mL of a diluted solution of Na2S2O3 and 4 × 50 mL of a solution of NaHCO3 and dried over Na2SO4. The solvent was removed at 35 °C and the residue was purified by silica gel column chromatography (CH2Cl2-EtOAc 90:10) to afford 455 mg (61%) of manno-5 (R f = 0.27) as a white solid, mp 129-130 °C (recrystalliza-tion from EtOH) and 220 mg (29%) of gluco-5 (R f = 0.22) as a colorless oil. Lactone manno-5: [α]D 25 +10.5 (c 1.01, CHCl3). 1H NMR (500 MHz, CDCl3): δ = 2.07, 2.08, 2.12, 2.14 (4 s, each 3 H, OAc), 2.17 (dddd, J = 13.2, 9.8, 9.0, 7.4 Hz, 1 H, 3-H), 2.24 (dddd, J = 13.2, 9.0, 7.4, 5.5 Hz, 1 H, 3′-H), 2.51 (dt, J = 17.9, 9.0 Hz, 1 H, 2-H), 2.57 (ddd, J = 17.9, 9.8, 5.5 Hz, 1 H, 2′-H), 4.13 (dd, J = 12.5, 4.8 Hz, 1 H, 8-H), 4.26 (dd, J = 12.5, 2.7 Hz, 1 H, 8′-H), 4.57 (dt, J = 7.4, 6.1 Hz, 1 H, 4-H), 5.08 (ddd, J = 8.7, 4.8, 2.7 Hz, 1 H, 7-H), 5.33 (dd, J = 6.1, 2.5 Hz, 1 H, 5-H), 5.51 (dd, J = 8.7, 2.5 Hz, 1 H, 6-H). 13C NMR (125 MHz, CDCl3): δ = 20.6, 20.7, 20.8, 20.9 (4 q, OAc), 23.4 (t, C-3), 27.7 (t, C-2), 61.5 (t, C-8), 68.0, 68.1, 69.9 (3 d, C-5, C-6, C-7), 77.2 (d, C-4), 169.5, 169.9, 170.0, 170.6 (4 s, OAc), 176.1 (s, C-1). Anal. Calcd for C16H22O10: C, 51.34; H, 5.92. Found: C, 51.18; H, 5.84. Lactone gluco-5: [α]D 25 +36.0 (c 1.15, CHCl3). 1H NMR (500 MHz, CDCl3): δ = 2.01 (dddd, J = 13.2, 9.1, 8.9, 7.2 Hz, 1 H, 3-H), 2.04, 2.06, 2.11, 2.14 (4 s, each 3 H, OAc), 2.34-2.42 (m, 1 H, 3′-H), 2.46-2.50 (m, 2 H, 2-H), 4.14 (dd, J = 12.6, 4.3 Hz, 1 H, 8-H), 4.22 (dd, J = 12.6, 2.5 Hz, 1 H, 8′-H), 4.57 (td, J = 7.2, 5.5 Hz, 1 H, 4-H), 5.10 (ddd, J = 9.1, 4.3, 2.5 Hz, 1 H, 7-H), 5.25 (dd, J = 5.5, 2.2 Hz, 1 H, 5-H), 5.42 (dd, J = 9.1, 2.2 Hz, 1 H, 6-H). 13C NMR (125 MHz, CDCl3): δ = 20.6, 20.7, 20.8, 20.9 (4 q, OAc), 24.4 (t, C-3), 27.7 (t, C-2), 61.4 (t, C-8), 67.8, 68.2, 70.6 (3 d, C-5, C-6, C-7), 78.4 (d, C-4), 169.7, 170.1, 170.2, 170.5 (4 s, OAc), 175.7 (s, C-1). Anal. Calcd for C16H22O10: C, 51.34; H, 5.92. Found: C, 51.37; H, 5.72.