Subscribe to RSS
DOI: 10.1055/s-2004-836029
Planar and Central Chiral [2.2]Paracyclophanes as Powerful Catalysts for Asymmetric 1,2-Addition Reactions
Publication History
Publication Date:
25 November 2004 (online)
Abstract
Planar and central chiral [2.2]paracyclophane ligands have been designed and used in the highly enantioselective addition of alkyl, alkenyl, alkynyl and aryl zinc reagents to aldehydes and imines.
1 Why Use [2.2]Paracyclophanes as Chiral Ligands?
2 Synthesis of [2.2]Paracyclophane Ligands
2.1 Preparation and Resolution of FHPC, AHPC and BHPC-Based Imines
2.2 Synthesis of Further Imines Based on FHPC and AHPC
2.3 Synthesis of Chiral Amine Ligands
2.4 1,2-Addition to Imines
2.5 Reductive Amination
2.6 Structural Information on AHPC-Based Imines
2.7 Synthesis of Enantiomerically Pure Thio-Substituted Paracyclophanes
2.8 Other Cyclophane-Based Ligands Used for Asymmetric 1,2-Addition Reactions
3 Asymmetric 1,2-Addition Reactions to Aryl Aldehydes
3.1 Initial Considerations
3.2 Mechanistic Investigations
3.3 Reactivity of [2.2]Paracyclophane Ligands
3.4 Asymmetric Addition Reactions to Aromatic Aldehydes: Scope of Substrates
4 Asymmetric Addition Reactions to Aliphatic Aldehydes
5 Addition of Alkenyl Zinc Reagents to Aldehydes
6 Addition of Alkynyl Zinc Reagents to Aldehydes
7 Addition of Phenylzinc to Aldehydes
8 Asymmetric Addition Reactions to Imines
9 Asymmetric Addition Reactions on Solid Supports
10 Conclusions and Outlook
11 Abbreviations
Key words
asymmetric catalysis - ligands - paracyclophanes - zinc - nucleophilic additions
- 1
Knowles WS.Sabacky M. J. Chem. Soc., Chem. Commun. 1968, 1445 - 2
Kagan HB.Dang TP. J. Am. Chem. Soc. 1972, 94: 6429 - 3
Noyori R. Science 1990, 248: 1194 -
4a
Knowles WS. Angew. Chem. Int. Ed. 2002, 41: 1996 ; Angew. Chem. 2002, 114, 2096 -
4b
Noyori R. Angew. Chem. Int. Ed. 2002, 41: 2008 ; Angew. Chem. 2002, 114, 2108 -
4c
Sharpless KB. Angew. Chem. Int. Ed. 2002, 41: 2024 ; Angew. Chem. 2002, 114, 2126 - 5
Stinson SC. Chem. Eng. News 2001, 79: 45 -
6a
Reich HJ.Cram DJ. J. Am. Chem. Soc. 1969, 91: 3527 -
6b
Cram DJ.Steinberg H. J. Am. Chem. Soc. 1951, 73: 5691 -
7a
Pye PJ.Rossen K.Reamer RA.Tsou NN.Volante RP.Reider PJ. J. Am. Chem. Soc. 1997, 119: 6207 -
7b
Rossen K.Reamer RA.Volante RP.Reider PJ. Tetrahedron Lett. 1998, 39: 4441 -
7c
Rossen K.Pye PJ.Maliakal A.Volante RP. J. Org. Chem. 1997, 62: 6462 - 8
Gibson S.Knight JD. Org. Biomol. Chem. 2003, 1: 1256 - 9
Bräse S.Lauterwasser F.Ziegert RE. Adv. Synth. Catal. 2003, 345: 869 - 10
Helmchen G.Pfaltz A. Acc. Chem. Res. 2000, 33: 336 - 11
Vetter AH.Berkessel A. Tetrahedron Lett. 1998, 39: 1741 -
12a
Rozenberg V.Kharitonov V.Antonov D.Sergeeva E.Aleshkin A.Ikonnikov N.Orlova S.Belokon Y. Angew. Chem., Int. Ed. Engl. 1994, 33: 91 ; Angew. Chem. 1994, 106, 106 -
12b
Antonov D.Belokon YN.Ikonnikov NS.Orlova SA.Pisaevsky AP.Raevski NI.Rozenberg VI.Sergeeva EV.Struchkov YT.Tararov VI.Vorontsov EV. J. Chem. Soc., Perkin Trans. 1 1995, 1873 - 13
Rozenberg V.Danilova T.Sergeeva E.Vorontsov E.Starikova Z.Lysenko K.Belokon Y. Eur. J. Org. Chem. 2000, 3295 -
14a
Pastor SD.Togni A. J. Am. Chem. Soc. 1989, 111: 2333 -
14b
Togni A.Pastor SD. J. Org. Chem. 1990, 55: 1649 -
14c
Pastor SD.Togni A. Helv. Chim. Acta 1991, 74: 905 -
14d
The term ‘Chiral Cooperativity’ was used by Pastor and Togni to describe positive interaction of different chiral moieties surpassing their mere addition. The case of diminishing was not investigated by the authors. Therefore they used ‘not cooperative’ in the case of a ‘mismatched pair’.
-
15a
Masamune S.Choy W.Petersen JS.Sita LR. Angew. Chem., Int. Ed. Engl. 1985, 24: 1 ; Angew. Chem. 1985, 97, 1 -
15b
Heathcock CH.White CT. J. Am. Chem. Soc. 1979, 101: 7076 -
15c
Horeau A.Kagan H.-B.Vigneron J.-P. Bull. Soc. Chim. Fr. 1968, 3795 -
16a
Hayashi T.Tajika M.Tamao K.Kumada M. J. Am. Chem. Soc. 1976, 98: 3718 -
16b
Hayashi T.Konishi M.Fukushima M.Mise T.Kagotani M.Tajika M.Kumada M. J. Am. Chem. Soc. 1982, 104: 180 -
17a
Bolm C.Muniz-Fernández K.Seger A.Raabe G.Günther K. J. Org. Chem. 1998, 63: 7860 -
17b
Bolm C.Muniz K.Hildebrand JP. Org. Lett. 1999, 1: 491 - For studies on chiral cooperativity in axial- and central-chiral ligands, see:
-
18a
Buisman GJH.van der Veen LA.Klootwijk A.de Lange WGI.Kamer PCJ.van Leeuwen PWNM.Vogt D. Organometallics 1997, 16: 2929 -
18b
Cserépi-Szûcs S.Tóth I.Párkányi L.Bakos J. Tetrahedron: Asymmetry 1998, 9: 3135 -
18c
Cserépi-Szûcs S.Huttner G.Zsolnai L.Szölõsy A.Hegedüs C.Bakos J. Inorg. Chim. Acta 1999, 296: 222 -
19a
Hopf H.Barrett DG. Liebigs Ann. 1995, 449 -
19b
Cipiciani A.Fringuelli F.Mancini V.Piermatti O.Pizzo F.Ruzziconi R. J. Org. Chem. 1997, 62: 3744 -
19c
Pamperin D.Schulz C.Hopf H.Syldatk C.Pietzsch M. Eur. J. Org. Chem. 1998, 1441 -
19d
Rozenberg V.Danilova T.Sergeeva E.Vorontsov E.Starikova Z.Korlyukov A.Hopf H. Eur. J. Org. Chem. 2002, 468 -
20a
Hoffmann RW.Ditrich K. Synthesis 1983, 107 -
20b
Krohn K.Rieger H.Hopf H.Barrett D.Jones PG.Doring D. Chem. Ber. 1990, 123: 1729 - 21
Dahmen S.Bräse S. Tetrahedron: Asymmetry 2001, 12: 2845 - 22
Sergeeva EV.Rozenberg VI.Vorontsov EV.Danilova TI.Starikova ZA.Yanovsky AI.Belokon YN.Hopf H. Tetrahedron: Asymmetry 1996, 7: 3445 - 23
Kane VV.Gerdes A.Grahn W.Ernst L.Dix I.Jones PG.Hopf H. Tetrahedron Lett. 2001, 42: 373 -
24a
Cipiciani A.Fringuelli F.Mancini V.Piermatti O.Scappini AM.Ruzziconi R. Tetrahedron 1997, 53: 11853 -
24b
Pamperin D.Schulz C.Hopf H.Syldatk C.Pietzsch M. Eur. J. Org. Chem. 1998, 1441 - 26
Still IWJ.Natividad-Preyra R.Toste FD. Can. J. Chem. 1999, 77: 113 - 27
Miranda EI.Díaz MJ.Rosado I.Soderquist JA. Tetrahedron Lett. 1994, 50: 3221 - 28
Wipf P.Kendall C. Chem.-Eur. J. 2002, 8: 1778 - 29
Danilova T.Rozenberg V.Vorontsov EV.Starikova Z.Hopf H. Tetrahedron: Asymmetry 2003, 14: 1375 - 30
Danilova T.Rozenberg VI.Sergeeva EV.Starikova ZA.Bräse S. Tetrahedron: Asymmetry 2003, 14: 2013 - 33
Dahmen S. PhD Thesis RWTH Aachen: 2002. -
38a
Goldfuss B.Houk KN. J. Org. Chem. 1998, 63: 8998 -
38b
Goldfuss B.Steigelmann M.Khan SI.Houk KN. J. Org. Chem. 2000, 65: 77 - 39
Rasmussen T.Norrby P.-O. J. Am. Chem. Soc. 2001, 123: 2464 -
40a
Kitamura M.Suga S.Oka H.Noyori R. J. Am. Chem. Soc. 1998, 120: 9800 -
40b
Dahmen, S.; Lauterwasser, F.; Vanderheiden, S.; Bräse, S. unpublished.
-
40c
Wipf P.Pierce JG.Wang X. Tetrahedron: Asymmetry 2003, 14: 3605 ; and references cited therein - 41
Dahmen S.Bräse S. Chem. Commun. 2002, 26 - 42
Nugent WA. Org. Lett. 2002, 4: 2133 - 43
Höfener S.Lauterwasser F.Bräse S. Adv. Synth. Catal. 2004, 346: 755 - 44
Dahmen S.Bräse S. unpublished -
46a
Oppolzer W.Radinov RN. Tetrahedron Lett. 1988, 29: 5645 -
46b
Oppolzer W.Radinov RN. Tetrahedron Lett. 1991, 32: 5777 -
47a
Noyori R.Kitamura M. Angew. Chem., Int. Ed. Engl. 1991, 30: 49 -
47b
Kitamura M.Suga S.Kawai K.Noyori R. J. Am. Chem. Soc. 1986, 108: 6071 -
48a
Oppolzer W.Radinov RN. Helv. Chim. Acta 1992, 75: 170 -
48b This reaction was recently extended to intramolecular cyclization reactions:
Oppolzer W.Radinov RN.El-Sayed E. J. Org. Chem. 2001, 66: 4766 - The addition of vinylzinc has also been studied:
-
49a
von dem Bussche-Hünnefeld JL.Seebach D. Tetrahedron 1992, 48: 5719 -
49b
Soai K.Takahashi K. J. Chem. Soc., Perkin Trans. 1 1994, 1257 -
49c
Shibata T.Nakatsui K.Soai K. Inorg. Chim. Acta 1999, 296: 33 -
50a
Wipf P.Xu W. Tetrahedron Lett. 1994, 35: 5197 -
50b
Wipf P.Xu W. Org. Synth. 1997, 74: 205 -
50c
Wipf P.Ribe S. J. Org. Chem. 1998, 63: 6454 - 51
Dahmen S.Bräse S. Org. Lett. 2001, 3: 4119 -
54a
Nehl H.Scheidt W. J. Organomet. Chem. 1985, 289: 1 -
54b
Mynott R.Gabor B.Lehmkuhl H.Doering I. Angew. Chem., Int. Ed. Engl. 1985, 24: 335 -
55a
Bolm C.Hermanns N.Hildebrand JP.Muniz K. Angew. Chem. Int. Ed. 2000, 39: 3465 ; Angew. Chem. 2000, 112, 3607 -
55b
Blacker J. In Proceedings of the 3rd International Conference on the Scale Up of Chemical ProcessesLaird T. Scientific Update; Mayfieldn / East Sussex / Great Britain: 1998. - 56
Alvaro G.Pacioni P.Savoia D. Chem.-Eur. J. 1997, 3: 726 - 57
Modern Acetylene Chemistry
Stang PJ.Diederich F. VCH; Weinheim: 1995. - 58 For a recent review, see:
Pu L. Tetrahedron 2003, 59: 9873 - 59
Ishizaki M.Hoshino O. Tetrahedron: Asymmetry 1994, 5: 1901 -
60a
Frantz DE.Fässler R.Carreira EM. J. Am. Chem. Soc. 2000, 122: 1806 -
60b
Boyall D.López F.Sasaki H.Frantz D.Carreira EM. Org. Lett. 2000, 2: 4233 -
60c
Frantz DE.Fässler R.Tomooka CS.Carreira EN. Acc. Chem. Res. 2000, 33: 373 -
60d
Anand NK.Carreira EN. J. Am. Chem. Soc. 2001, 123: 9687 - 62
Xu M.-H.Pu L. Org. Lett. 2002, 4: 4555 - 63
Bolm C.Rudolph J. J. Am. Chem. Soc. 2002, 124: 14850 - For selected references in this field, see:
-
66a
Bolm C.Hildebrand JP.Muniz K.Hermanns N. Angew. Chem. Int. Ed. 2001, 40: 3284 ; Angew. Chem. 2001, 113, 3382 -
66b
Bolm C.Rudolph J. J. Am. Chem. Soc. 2002, 124: 14850 -
66c
Rudolph J.Schmidt F.Bolm C. Adv. Synth. Catal. 2004, 346: 867 - For selected APIs, see: (S)-Carbinoxamine:
-
67a
Roszowski AP.Govier WM. Pharmakologist 1959, 1: 60 -
67b
Hunt JH. J. Chem. Soc. 1961, 2228 -
67c
Barouh V.Dall H.Patel D.Hite G. J. Med. Chem. 1971, 14: 834 -
67d
James MNG.Williams GJB. Can. J. Chem. 1974, 52: 1872 -
67e
(R)-Neobenodin and (R)-orphenadrin:
-
67f
Casy AF.Drake AF.Ganellin CR.Mercer AD. Chirality 1992, 4: 356 -
67g
van der Stelt C.Heus WJ.Nauta WT. Arzneim.-Forsch. 1969, 19: 2010 -
67h
Rekker RF.Timmerman H.Harms AF.Nauta WT. Arzneim.-Forsch. 1971, 21: 688 -
68a
Corey EJ.Helal CJ. Tetrahedron Lett. 1995, 36: 9153 -
68b
Corey EJ.Helal CJ. Tetrahedron Lett. 1996, 37: 4837 -
68c
Corey EJ.Helal CJ. Tetrahedron Lett. 1996, 37: 5675 -
68d
Corey EJ.Helal CJ. Angew. Chem. Int. Ed. 1998, 37: 1986 ; Angew. Chem. 1998, 110, 2092 -
69a
Okhuma T.Koizumi M.Ikehira H.Yokozawa T.Noyori R. Org. Lett. 2000, 2: 659 -
69b
Noyori R.Okhuma T. Pure Appl. Chem. 1999, 71: 1493 - 70
Hermanns N. PhD Thesis RWTH; Aachen: 2002. - 71
Rudolph J. PhD Thesis RWTH; Aachen: 2004. -
72a
Dahmen S.Bräse S. J. Am. Chem. Soc. 2002, 124: 5940 -
72b
Hermanns N.Dahmen S.Bolm C.Bräse S. Angew. Chem. Int. Ed. 2002, 41: 3692 ; Angew. Chem. 2002, 114, 3844 - 74
Knepper K.Ziegert RE.Bräse S. Tetrahedron 2004, 60: 8591
References
Kreis, M. unpublished results.
31The transfer of the planar cylopentadienyl moiety of the ferrocene to benzenederivatives as done by Bolm et al. is risky, because of the change of the ortho-angle from 72° for the ferrocene to 60° for the benzenederivatives. These changes in the molecule geometry make it extremely difficult to derive the exact nature of the transition state from the one of the ferrocene.
32To give the reader the opportunity to compare the results of the catalysis directly with the ligand structure, we do this without a detailed summary of the reactions. Further in this chapter, we will only show the catalyst and its results in the diethylzinc addition to benzaldehyde with the conditions as shown in Scheme [12] .
34Lauterwasser, F. unpublished results.
35Energy minimization of the corresponding conformers were done with Chem3D Pro and CS MOPAC Pro.
36In a PM3 calculation of the conformers done by J. Rudolph with the program Spartan 2001 (Wavefunction Inc., California) the results of the MNDO-analysis werde confirmed, resulting in conformer A as the conformer with the lowest energy. Although the differences in energy by this method are only 5 kcal/mol and therefore a bit lower as with MNDO, they are still high enough to make any consideration of the conformer B superfluous. (1 kcal = 4.1868 kJ).
37The energy differences of the µ-O structures are only between 1-3 kcal/mol.
45Allyl alcohols are substrates for, e.g., cyclopropanation reactions, aziridination reactions, ene-reactions, epoxidations, dihydroxylations, methoxy selenations, iodo hydroxylations, brominations, and allylic substitution reactions.
52Using these modifications, the aldehyde could be added in one portion, which is a significant practical improvement over the original Oppolzer protocol, where the aldehyde had to be added over a period of 20 min to obtain high enantioselectivities.
53The absolute configuration was assigned by comparison of the optical rotation with the literature known compounds (S)-1-(4-chlorophenyl)hept-2-en-1-ol and (S)-1-phenylnon-2-en-1-ol, respectively, and the assumption of a unanimous reaction pathway for all other aldehyde substrates. The absolute configuration of the allyl alcohol products 51 is consistent with the induction observed in the diethylzinc addition to aldehydes with the ligands 5a and 6a.
61Zn(OTf)2 is ten times more expensive than diethylzinc: Zn(OTf)2: 10 g 46.80 $ ( = 1 $/mmol), Et2Zn in hexane: 100 g (810 mmol) 80.90 $ (= 0.1 $/mmol). Prices taken from Acros Organics.
64This behavior is untypical for mixed zinc species. The equilibrium could be influenced by the very low solubility of the dialkynylzinc reagents.
65The clear supernant solution gives rise to the ethylation product in >80% yield.
73Bräse, S.; Dahmen, S.; Vogt, H. to be submitted.