References
<A NAME="RA35304ST-1">1</A>
Knowles WS.
Sabacky M.
J. Chem. Soc., Chem. Commun.
1968,
1445
<A NAME="RA35304ST-2">2</A>
Kagan HB.
Dang TP.
J. Am. Chem. Soc.
1972,
94:
6429
<A NAME="RA35304ST-3">3</A>
Noyori R.
Science
1990,
248:
1194
<A NAME="RA35304ST-4A">4a</A>
Knowles WS.
Angew. Chem. Int. Ed.
2002,
41:
1996 ; Angew. Chem. 2002, 114, 2096
<A NAME="RA35304ST-4B">4b</A>
Noyori R.
Angew. Chem. Int. Ed.
2002,
41:
2008 ; Angew. Chem.
2002, 114, 2108
<A NAME="RA35304ST-4C">4c</A>
Sharpless KB.
Angew. Chem. Int. Ed.
2002,
41:
2024 ; Angew. Chem. 2002, 114, 2126
<A NAME="RA35304ST-5">5</A>
Stinson SC.
Chem. Eng. News
2001,
79:
45
<A NAME="RA35304ST-6A">6a</A>
Reich HJ.
Cram DJ.
J. Am. Chem. Soc.
1969,
91:
3527
<A NAME="RA35304ST-6B">6b</A>
Cram DJ.
Steinberg H.
J. Am. Chem. Soc.
1951,
73:
5691
<A NAME="RA35304ST-7A">7a</A>
Pye PJ.
Rossen K.
Reamer RA.
Tsou NN.
Volante RP.
Reider PJ.
J. Am. Chem. Soc.
1997,
119:
6207
<A NAME="RA35304ST-7B">7b</A>
Rossen K.
Reamer RA.
Volante RP.
Reider PJ.
Tetrahedron Lett.
1998,
39:
4441
<A NAME="RA35304ST-7C">7c</A>
Rossen K.
Pye PJ.
Maliakal A.
Volante RP.
J. Org. Chem.
1997,
62:
6462
<A NAME="RA35304ST-8">8</A>
Gibson S.
Knight JD.
Org. Biomol. Chem.
2003,
1:
1256
<A NAME="RA35304ST-9">9</A>
Bräse S.
Lauterwasser F.
Ziegert RE.
Adv. Synth. Catal.
2003,
345:
869
<A NAME="RA35304ST-10">10</A>
Helmchen G.
Pfaltz A.
Acc. Chem. Res.
2000,
33:
336
<A NAME="RA35304ST-11">11</A>
Vetter AH.
Berkessel A.
Tetrahedron Lett.
1998,
39:
1741
<A NAME="RA35304ST-12A">12a</A>
Rozenberg V.
Kharitonov V.
Antonov D.
Sergeeva E.
Aleshkin A.
Ikonnikov N.
Orlova S.
Belokon Y.
Angew. Chem., Int. Ed. Engl.
1994,
33:
91 ; Angew. Chem. 1994, 106, 106
<A NAME="RA35304ST-12B">12b</A>
Antonov D.
Belokon YN.
Ikonnikov NS.
Orlova SA.
Pisaevsky AP.
Raevski NI.
Rozenberg VI.
Sergeeva EV.
Struchkov YT.
Tararov VI.
Vorontsov EV.
J. Chem. Soc., Perkin Trans. 1
1995,
1873
<A NAME="RA35304ST-13">13</A>
Rozenberg V.
Danilova T.
Sergeeva E.
Vorontsov E.
Starikova Z.
Lysenko K.
Belokon Y.
Eur. J. Org. Chem.
2000,
3295
<A NAME="RA35304ST-14A">14a</A>
Pastor SD.
Togni A.
J. Am. Chem. Soc.
1989,
111:
2333
<A NAME="RA35304ST-14B">14b</A>
Togni A.
Pastor SD.
J. Org. Chem.
1990,
55:
1649
<A NAME="RA35304ST-14C">14c</A>
Pastor SD.
Togni A.
Helv. Chim. Acta
1991,
74:
905
<A NAME="RA35304ST-14D">14d</A>
The term ‘Chiral Cooperativity’ was used by Pastor and Togni to describe positive
interaction of different chiral moieties surpassing their mere addition. The case
of diminishing was not investigated by the authors. Therefore they used ‘not cooperative’
in the case of a ‘mismatched pair’.
<A NAME="RA35304ST-15A">15a</A>
Masamune S.
Choy W.
Petersen JS.
Sita LR.
Angew. Chem., Int. Ed. Engl.
1985,
24:
1 ; Angew. Chem. 1985, 97, 1
<A NAME="RA35304ST-15B">15b</A>
Heathcock CH.
White CT.
J. Am. Chem. Soc.
1979,
101:
7076
<A NAME="RA35304ST-15C">15c</A>
Horeau A.
Kagan H.-B.
Vigneron J.-P.
Bull. Soc. Chim. Fr.
1968,
3795
<A NAME="RA35304ST-16A">16a</A>
Hayashi T.
Tajika M.
Tamao K.
Kumada M.
J. Am. Chem. Soc.
1976,
98:
3718
<A NAME="RA35304ST-16B">16b</A>
Hayashi T.
Konishi M.
Fukushima M.
Mise T.
Kagotani M.
Tajika M.
Kumada M.
J. Am. Chem. Soc.
1982,
104:
180
<A NAME="RA35304ST-17A">17a</A>
Bolm C.
Muniz-Fernández K.
Seger A.
Raabe G.
Günther K.
J. Org. Chem.
1998,
63:
7860
<A NAME="RA35304ST-17B">17b</A>
Bolm C.
Muniz K.
Hildebrand JP.
Org. Lett.
1999,
1:
491
For studies on chiral cooperativity in axial- and central-chiral ligands, see:
<A NAME="RA35304ST-18A">18a</A>
Buisman GJH.
van der Veen LA.
Klootwijk A.
de Lange WGI.
Kamer PCJ.
van Leeuwen PWNM.
Vogt D.
Organometallics
1997,
16:
2929
<A NAME="RA35304ST-18B">18b</A>
Cserépi-Szûcs S.
Tóth I.
Párkányi L.
Bakos J.
Tetrahedron: Asymmetry
1998,
9:
3135
<A NAME="RA35304ST-18C">18c</A>
Cserépi-Szûcs S.
Huttner G.
Zsolnai L.
Szölõsy A.
Hegedüs C.
Bakos J.
Inorg. Chim. Acta
1999,
296:
222
<A NAME="RA35304ST-19A">19a</A>
Hopf H.
Barrett DG.
Liebigs Ann.
1995,
449
<A NAME="RA35304ST-19B">19b</A>
Cipiciani A.
Fringuelli F.
Mancini V.
Piermatti O.
Pizzo F.
Ruzziconi R.
J. Org. Chem.
1997,
62:
3744
<A NAME="RA35304ST-19C">19c</A>
Pamperin D.
Schulz C.
Hopf H.
Syldatk C.
Pietzsch M.
Eur. J. Org. Chem.
1998,
1441
<A NAME="RA35304ST-19D">19d</A>
Rozenberg V.
Danilova T.
Sergeeva E.
Vorontsov E.
Starikova Z.
Korlyukov A.
Hopf H.
Eur. J. Org. Chem.
2002,
468
<A NAME="RA35304ST-20A">20a</A>
Hoffmann RW.
Ditrich K.
Synthesis
1983,
107
<A NAME="RA35304ST-20B">20b</A>
Krohn K.
Rieger H.
Hopf H.
Barrett D.
Jones PG.
Doring D.
Chem. Ber.
1990,
123:
1729
<A NAME="RA35304ST-21">21</A>
Dahmen S.
Bräse S.
Tetrahedron: Asymmetry
2001,
12:
2845
<A NAME="RA35304ST-22">22</A>
Sergeeva EV.
Rozenberg VI.
Vorontsov EV.
Danilova TI.
Starikova ZA.
Yanovsky AI.
Belokon YN.
Hopf H.
Tetrahedron: Asymmetry
1996,
7:
3445
<A NAME="RA35304ST-23">23</A>
Kane VV.
Gerdes A.
Grahn W.
Ernst L.
Dix I.
Jones PG.
Hopf H.
Tetrahedron Lett.
2001,
42:
373
<A NAME="RA35304ST-24A">24a</A>
Cipiciani A.
Fringuelli F.
Mancini V.
Piermatti O.
Scappini AM.
Ruzziconi R.
Tetrahedron
1997,
53:
11853
<A NAME="RA35304ST-24B">24b</A>
Pamperin D.
Schulz C.
Hopf H.
Syldatk C.
Pietzsch M.
Eur. J. Org. Chem.
1998,
1441
<A NAME="RA35304ST-25">25</A>
Kreis, M. unpublished results.
<A NAME="RA35304ST-26">26</A>
Still IWJ.
Natividad-Preyra R.
Toste FD.
Can. J. Chem.
1999,
77:
113
<A NAME="RA35304ST-27">27</A>
Miranda EI.
Díaz MJ.
Rosado I.
Soderquist JA.
Tetrahedron Lett.
1994,
50:
3221
<A NAME="RA35304ST-28">28</A>
Wipf P.
Kendall C.
Chem.-Eur. J.
2002,
8:
1778
<A NAME="RA35304ST-29">29</A>
Danilova T.
Rozenberg V.
Vorontsov EV.
Starikova Z.
Hopf H.
Tetrahedron: Asymmetry
2003,
14:
1375
<A NAME="RA35304ST-30">30</A>
Danilova T.
Rozenberg VI.
Sergeeva EV.
Starikova ZA.
Bräse S.
Tetrahedron: Asymmetry
2003,
14:
2013
<A NAME="RA35304ST-31">31</A>
The transfer of the planar cylopentadienyl moiety of the ferrocene to benzenederivatives
as done by Bolm et al. is risky, because of the change of the ortho-angle from 72° for the ferrocene to 60° for the benzenederivatives. These changes
in the molecule geometry make it extremely difficult to derive the exact nature of
the transition state from the one of the ferrocene.
<A NAME="RA35304ST-32">32</A>
To give the reader the opportunity to compare the results of the catalysis directly
with the ligand structure, we do this without a detailed summary of the reactions.
Further in this chapter, we will only show the catalyst and its results in the diethylzinc
addition to benzaldehyde with the conditions as shown in Scheme
[12]
.
<A NAME="RA35304ST-33">33</A>
Dahmen S.
PhD Thesis
RWTH Aachen:
2002.
<A NAME="RA35304ST-34">34</A>
Lauterwasser, F. unpublished results.
<A NAME="RA35304ST-35">35</A>
Energy minimization of the corresponding conformers were done with Chem3D Pro and
CS MOPAC Pro.
<A NAME="RA35304ST-36">36</A>
In a PM3 calculation of the conformers done by J. Rudolph with the program Spartan 2001 (Wavefunction Inc., California) the results of the MNDO-analysis
werde confirmed, resulting in conformer A as the conformer with the lowest energy. Although the differences in energy by this
method are only 5 kcal/mol and therefore a bit lower as with MNDO, they are still
high enough to make any consideration of the conformer B superfluous. (1 kcal = 4.1868 kJ).
<A NAME="RA35304ST-37">37</A>
The energy differences of the µ-O structures are only between 1-3 kcal/mol.
<A NAME="RA35304ST-38A">38a</A>
Goldfuss B.
Houk KN.
J. Org. Chem.
1998,
63:
8998
<A NAME="RA35304ST-38B">38b</A>
Goldfuss B.
Steigelmann M.
Khan SI.
Houk KN.
J. Org. Chem.
2000,
65:
77
<A NAME="RA35304ST-39">39</A>
Rasmussen T.
Norrby P.-O.
J. Am. Chem. Soc.
2001,
123:
2464
<A NAME="RA35304ST-40A">40a</A>
Kitamura M.
Suga S.
Oka H.
Noyori R.
J. Am. Chem. Soc.
1998,
120:
9800
<A NAME="RA35304ST-40B">40b</A>
Dahmen, S.; Lauterwasser, F.; Vanderheiden, S.; Bräse, S. unpublished.
<A NAME="RA35304ST-40C">40c</A>
Wipf P.
Pierce JG.
Wang X.
Tetrahedron: Asymmetry
2003,
14:
3605 ; and references cited therein
<A NAME="RA35304ST-41">41</A>
Dahmen S.
Bräse S.
Chem. Commun.
2002,
26
<A NAME="RA35304ST-42">42</A>
Nugent WA.
Org. Lett.
2002,
4:
2133
<A NAME="RA35304ST-43">43</A>
Höfener S.
Lauterwasser F.
Bräse S.
Adv. Synth. Catal.
2004,
346:
755
<A NAME="RA35304ST-44">44</A>
Dahmen S.
Bräse S. unpublished
<A NAME="RA35304ST-45">45</A>
Allyl alcohols are substrates for, e.g., cyclopropanation reactions, aziridination
reactions, ene-reactions, epoxidations, dihydroxylations, methoxy selenations, iodo
hydroxylations, brominations, and allylic substitution reactions.
<A NAME="RA35304ST-46A">46a</A>
Oppolzer W.
Radinov RN.
Tetrahedron Lett.
1988,
29:
5645
<A NAME="RA35304ST-46B">46b</A>
Oppolzer W.
Radinov RN.
Tetrahedron Lett.
1991,
32:
5777
<A NAME="RA35304ST-47A">47a</A>
Noyori R.
Kitamura M.
Angew. Chem., Int. Ed. Engl.
1991,
30:
49
<A NAME="RA35304ST-47B">47b</A>
Kitamura M.
Suga S.
Kawai K.
Noyori R.
J. Am. Chem. Soc.
1986,
108:
6071
<A NAME="RA35304ST-48A">48a</A>
Oppolzer W.
Radinov RN.
Helv. Chim. Acta
1992,
75:
170
<A NAME="RA35304ST-48B">48b</A> This reaction was recently extended to intramolecular cyclization reactions:
Oppolzer W.
Radinov RN.
El-Sayed E.
J. Org. Chem.
2001,
66:
4766
The addition of vinylzinc has also been studied:
<A NAME="RA35304ST-49A">49a</A>
von dem Bussche-Hünnefeld JL.
Seebach D.
Tetrahedron
1992,
48:
5719
<A NAME="RA35304ST-49B">49b</A>
Soai K.
Takahashi K.
J. Chem. Soc., Perkin Trans. 1
1994,
1257
<A NAME="RA35304ST-49C">49c</A>
Shibata T.
Nakatsui K.
Soai K.
Inorg. Chim. Acta
1999,
296:
33
<A NAME="RA35304ST-50A">50a</A>
Wipf P.
Xu W.
Tetrahedron Lett.
1994,
35:
5197
<A NAME="RA35304ST-50B">50b</A>
Wipf P.
Xu W.
Org. Synth.
1997,
74:
205
<A NAME="RA35304ST-50C">50c</A>
Wipf P.
Ribe S.
J. Org. Chem.
1998,
63:
6454
<A NAME="RA35304ST-51">51</A>
Dahmen S.
Bräse S.
Org. Lett.
2001,
3:
4119
<A NAME="RA35304ST-52">52</A>
Using these modifications, the aldehyde could be added in one portion, which is a
significant practical improvement over the original Oppolzer protocol, where the aldehyde
had to be added over a period of 20 min to obtain high enantioselectivities.
<A NAME="RA35304ST-53">53</A>
The absolute configuration was assigned by comparison of the optical rotation with
the literature known compounds (S)-1-(4-chlorophenyl)hept-2-en-1-ol and (S)-1-phenylnon-2-en-1-ol, respectively, and the assumption of a unanimous reaction
pathway for all other aldehyde substrates. The absolute configuration of the allyl
alcohol products 51 is consistent with the induction observed in the diethylzinc addition to aldehydes
with the ligands 5a and 6a.
<A NAME="RA35304ST-54A">54a</A>
Nehl H.
Scheidt W.
J. Organomet. Chem.
1985,
289:
1
<A NAME="RA35304ST-54B">54b</A>
Mynott R.
Gabor B.
Lehmkuhl H.
Doering I.
Angew. Chem., Int. Ed. Engl.
1985,
24:
335
<A NAME="RA35304ST-55A">55a</A>
Bolm C.
Hermanns N.
Hildebrand JP.
Muniz K.
Angew. Chem. Int. Ed.
2000,
39:
3465 ; Angew. Chem. 2000, 112, 3607
<A NAME="RA35304ST-55B">55b</A>
Blacker J. In Proceedings of the 3rd International Conference on the Scale Up of Chemical Processes
Laird T.
Scientific Update;
Mayfieldn / East Sussex / Great Britain:
1998.
<A NAME="RA35304ST-56">56</A>
Alvaro G.
Pacioni P.
Savoia D.
Chem.-Eur. J.
1997,
3:
726
<A NAME="RA35304ST-57">57</A>
Modern Acetylene Chemistry
Stang PJ.
Diederich F.
VCH;
Weinheim:
1995.
<A NAME="RA35304ST-58">58</A> For a recent review, see:
Pu L.
Tetrahedron
2003,
59:
9873
<A NAME="RA35304ST-59">59</A>
Ishizaki M.
Hoshino O.
Tetrahedron: Asymmetry
1994,
5:
1901
<A NAME="RA35304ST-60A">60a</A>
Frantz DE.
Fässler R.
Carreira EM.
J. Am. Chem. Soc.
2000,
122:
1806
<A NAME="RA35304ST-60B">60b</A>
Boyall D.
López F.
Sasaki H.
Frantz D.
Carreira EM.
Org. Lett.
2000,
2:
4233
<A NAME="RA35304ST-60C">60c</A>
Frantz DE.
Fässler R.
Tomooka CS.
Carreira EN.
Acc. Chem. Res.
2000,
33:
373
<A NAME="RA35304ST-60D">60d</A>
Anand NK.
Carreira EN.
J. Am. Chem. Soc.
2001,
123:
9687
<A NAME="RA35304ST-61">61</A>
Zn(OTf)2 is ten times more expensive than diethylzinc: Zn(OTf)2: 10 g 46.80 $ ( = 1 $/mmol), Et2Zn in hexane: 100 g (810 mmol) 80.90 $ (= 0.1 $/mmol). Prices taken from Acros Organics.
<A NAME="RA35304ST-62">62</A>
Xu M.-H.
Pu L.
Org. Lett.
2002,
4:
4555
<A NAME="RA35304ST-63">63</A>
Bolm C.
Rudolph J.
J. Am. Chem. Soc.
2002,
124:
14850
<A NAME="RA35304ST-64">64</A>
This behavior is untypical for mixed zinc species. The equilibrium could be influenced
by the very low solubility of the dialkynylzinc reagents.
<A NAME="RA35304ST-65">65</A>
The clear supernant solution gives rise to the ethylation product in >80% yield.
For selected references in this field, see:
<A NAME="RA35304ST-66A">66a</A>
Bolm C.
Hildebrand JP.
Muniz K.
Hermanns N.
Angew. Chem. Int. Ed.
2001,
40:
3284 ; Angew. Chem. 2001, 113, 3382
<A NAME="RA35304ST-66B">66b</A>
Bolm C.
Rudolph J.
J. Am. Chem. Soc.
2002,
124:
14850
<A NAME="RA35304ST-66C">66c</A>
Rudolph J.
Schmidt F.
Bolm C.
Adv. Synth. Catal.
2004,
346:
867
For selected APIs, see: (S)-Carbinoxamine:
<A NAME="RA35304ST-67A">67a</A>
Roszowski AP.
Govier WM.
Pharmakologist
1959,
1:
60
<A NAME="RA35304ST-67B">67b</A>
Hunt JH.
J. Chem. Soc.
1961,
2228
<A NAME="RA35304ST-67C">67c</A>
Barouh V.
Dall H.
Patel D.
Hite G.
J. Med. Chem.
1971,
14:
834
<A NAME="RA35304ST-67D">67d</A>
James MNG.
Williams GJB.
Can. J. Chem.
1974,
52:
1872
<A NAME="RA35304ST-67E">67e</A>
(R)-Neobenodin and (R)-orphenadrin:
<A NAME="RA35304ST-67F">67f</A>
Casy AF.
Drake AF.
Ganellin CR.
Mercer AD.
Chirality
1992,
4:
356
<A NAME="RA35304ST-67G">67g</A>
van der Stelt C.
Heus WJ.
Nauta WT.
Arzneim.-Forsch.
1969,
19:
2010
<A NAME="RA35304ST-67H">67h</A>
Rekker RF.
Timmerman H.
Harms AF.
Nauta WT.
Arzneim.-Forsch.
1971,
21:
688
<A NAME="RA35304ST-68A">68a</A>
Corey EJ.
Helal CJ.
Tetrahedron Lett.
1995,
36:
9153
<A NAME="RA35304ST-68B">68b</A>
Corey EJ.
Helal CJ.
Tetrahedron Lett.
1996,
37:
4837
<A NAME="RA35304ST-68C">68c</A>
Corey EJ.
Helal CJ.
Tetrahedron Lett.
1996,
37:
5675
<A NAME="RA35304ST-68D">68d</A>
Corey EJ.
Helal CJ.
Angew. Chem. Int. Ed.
1998,
37:
1986 ; Angew. Chem. 1998, 110, 2092
<A NAME="RA35304ST-69A">69a</A>
Okhuma T.
Koizumi M.
Ikehira H.
Yokozawa T.
Noyori R.
Org. Lett.
2000,
2:
659
<A NAME="RA35304ST-69B">69b</A>
Noyori R.
Okhuma T.
Pure Appl. Chem.
1999,
71:
1493
<A NAME="RA35304ST-70">70</A>
Hermanns N.
PhD Thesis
RWTH;
Aachen:
2002.
<A NAME="RA35304ST-71">71</A>
Rudolph J.
PhD Thesis
RWTH;
Aachen:
2004.
<A NAME="RA35304ST-72A">72a</A>
Dahmen S.
Bräse S.
J. Am. Chem. Soc.
2002,
124:
5940
<A NAME="RA35304ST-72B">72b</A>
Hermanns N.
Dahmen S.
Bolm C.
Bräse S.
Angew. Chem. Int. Ed.
2002,
41:
3692 ; Angew. Chem. 2002, 114, 3844
<A NAME="RA35304ST-73">73</A>
Bräse, S.; Dahmen, S.; Vogt, H. to be submitted.
<A NAME="RA35304ST-74">74</A>
Knepper K.
Ziegert RE.
Bräse S.
Tetrahedron
2004,
60:
8591