References
1
Knowles WS.
Sabacky M.
J. Chem. Soc., Chem. Commun.
1968,
1445
2
Kagan HB.
Dang TP.
J. Am. Chem. Soc.
1972,
94:
6429
3
Noyori R.
Science
1990,
248:
1194
4a
Knowles WS.
Angew. Chem. Int. Ed.
2002,
41:
1996 ; Angew. Chem. 2002, 114, 2096
4b
Noyori R.
Angew. Chem. Int. Ed.
2002,
41:
2008 ; Angew. Chem.
2002, 114, 2108
4c
Sharpless KB.
Angew. Chem. Int. Ed.
2002,
41:
2024 ; Angew. Chem. 2002, 114, 2126
5
Stinson SC.
Chem. Eng. News
2001,
79:
45
6a
Reich HJ.
Cram DJ.
J. Am. Chem. Soc.
1969,
91:
3527
6b
Cram DJ.
Steinberg H.
J. Am. Chem. Soc.
1951,
73:
5691
7a
Pye PJ.
Rossen K.
Reamer RA.
Tsou NN.
Volante RP.
Reider PJ.
J. Am. Chem. Soc.
1997,
119:
6207
7b
Rossen K.
Reamer RA.
Volante RP.
Reider PJ.
Tetrahedron Lett.
1998,
39:
4441
7c
Rossen K.
Pye PJ.
Maliakal A.
Volante RP.
J. Org. Chem.
1997,
62:
6462
8
Gibson S.
Knight JD.
Org. Biomol. Chem.
2003,
1:
1256
9
Bräse S.
Lauterwasser F.
Ziegert RE.
Adv. Synth. Catal.
2003,
345:
869
10
Helmchen G.
Pfaltz A.
Acc. Chem. Res.
2000,
33:
336
11
Vetter AH.
Berkessel A.
Tetrahedron Lett.
1998,
39:
1741
12a
Rozenberg V.
Kharitonov V.
Antonov D.
Sergeeva E.
Aleshkin A.
Ikonnikov N.
Orlova S.
Belokon Y.
Angew. Chem., Int. Ed. Engl.
1994,
33:
91 ; Angew. Chem. 1994, 106, 106
12b
Antonov D.
Belokon YN.
Ikonnikov NS.
Orlova SA.
Pisaevsky AP.
Raevski NI.
Rozenberg VI.
Sergeeva EV.
Struchkov YT.
Tararov VI.
Vorontsov EV.
J. Chem. Soc., Perkin Trans. 1
1995,
1873
13
Rozenberg V.
Danilova T.
Sergeeva E.
Vorontsov E.
Starikova Z.
Lysenko K.
Belokon Y.
Eur. J. Org. Chem.
2000,
3295
14a
Pastor SD.
Togni A.
J. Am. Chem. Soc.
1989,
111:
2333
14b
Togni A.
Pastor SD.
J. Org. Chem.
1990,
55:
1649
14c
Pastor SD.
Togni A.
Helv. Chim. Acta
1991,
74:
905
14d The term ‘Chiral Cooperativity’ was used by Pastor and Togni to describe positive interaction of different chiral moieties surpassing their mere addition. The case of diminishing was not investigated by the authors. Therefore they used ‘not cooperative’ in the case of a ‘mismatched pair’.
15a
Masamune S.
Choy W.
Petersen JS.
Sita LR.
Angew. Chem., Int. Ed. Engl.
1985,
24:
1 ; Angew. Chem. 1985, 97, 1
15b
Heathcock CH.
White CT.
J. Am. Chem. Soc.
1979,
101:
7076
15c
Horeau A.
Kagan H.-B.
Vigneron J.-P.
Bull. Soc. Chim. Fr.
1968,
3795
16a
Hayashi T.
Tajika M.
Tamao K.
Kumada M.
J. Am. Chem. Soc.
1976,
98:
3718
16b
Hayashi T.
Konishi M.
Fukushima M.
Mise T.
Kagotani M.
Tajika M.
Kumada M.
J. Am. Chem. Soc.
1982,
104:
180
17a
Bolm C.
Muniz-Fernández K.
Seger A.
Raabe G.
Günther K.
J. Org. Chem.
1998,
63:
7860
17b
Bolm C.
Muniz K.
Hildebrand JP.
Org. Lett.
1999,
1:
491
For studies on chiral cooperativity in axial- and central-chiral ligands, see:
18a
Buisman GJH.
van der Veen LA.
Klootwijk A.
de Lange WGI.
Kamer PCJ.
van Leeuwen PWNM.
Vogt D.
Organometallics
1997,
16:
2929
18b
Cserépi-Szûcs S.
Tóth I.
Párkányi L.
Bakos J.
Tetrahedron: Asymmetry
1998,
9:
3135
18c
Cserépi-Szûcs S.
Huttner G.
Zsolnai L.
Szölõsy A.
Hegedüs C.
Bakos J.
Inorg. Chim. Acta
1999,
296:
222
19a
Hopf H.
Barrett DG.
Liebigs Ann.
1995,
449
19b
Cipiciani A.
Fringuelli F.
Mancini V.
Piermatti O.
Pizzo F.
Ruzziconi R.
J. Org. Chem.
1997,
62:
3744
19c
Pamperin D.
Schulz C.
Hopf H.
Syldatk C.
Pietzsch M.
Eur. J. Org. Chem.
1998,
1441
19d
Rozenberg V.
Danilova T.
Sergeeva E.
Vorontsov E.
Starikova Z.
Korlyukov A.
Hopf H.
Eur. J. Org. Chem.
2002,
468
20a
Hoffmann RW.
Ditrich K.
Synthesis
1983,
107
20b
Krohn K.
Rieger H.
Hopf H.
Barrett D.
Jones PG.
Doring D.
Chem. Ber.
1990,
123:
1729
21
Dahmen S.
Bräse S.
Tetrahedron: Asymmetry
2001,
12:
2845
22
Sergeeva EV.
Rozenberg VI.
Vorontsov EV.
Danilova TI.
Starikova ZA.
Yanovsky AI.
Belokon YN.
Hopf H.
Tetrahedron: Asymmetry
1996,
7:
3445
23
Kane VV.
Gerdes A.
Grahn W.
Ernst L.
Dix I.
Jones PG.
Hopf H.
Tetrahedron Lett.
2001,
42:
373
24a
Cipiciani A.
Fringuelli F.
Mancini V.
Piermatti O.
Scappini AM.
Ruzziconi R.
Tetrahedron
1997,
53:
11853
24b
Pamperin D.
Schulz C.
Hopf H.
Syldatk C.
Pietzsch M.
Eur. J. Org. Chem.
1998,
1441
25 Kreis, M. unpublished results.
26
Still IWJ.
Natividad-Preyra R.
Toste FD.
Can. J. Chem.
1999,
77:
113
27
Miranda EI.
Díaz MJ.
Rosado I.
Soderquist JA.
Tetrahedron Lett.
1994,
50:
3221
28
Wipf P.
Kendall C.
Chem.-Eur. J.
2002,
8:
1778
29
Danilova T.
Rozenberg V.
Vorontsov EV.
Starikova Z.
Hopf H.
Tetrahedron: Asymmetry
2003,
14:
1375
30
Danilova T.
Rozenberg VI.
Sergeeva EV.
Starikova ZA.
Bräse S.
Tetrahedron: Asymmetry
2003,
14:
2013
31 The transfer of the planar cylopentadienyl moiety of the ferrocene to benzenederivatives as done by Bolm et al. is risky, because of the change of the ortho-angle from 72° for the ferrocene to 60° for the benzenederivatives. These changes in the molecule geometry make it extremely difficult to derive the exact nature of the transition state from the one of the ferrocene.
32 To give the reader the opportunity to compare the results of the catalysis directly with the ligand structure, we do this without a detailed summary of the reactions. Further in this chapter, we will only show the catalyst and its results in the diethylzinc addition to benzaldehyde with the conditions as shown in Scheme
[12]
.
33
Dahmen S.
PhD Thesis
RWTH Aachen:
2002.
34 Lauterwasser, F. unpublished results.
35 Energy minimization of the corresponding conformers were done with Chem3D Pro and CS MOPAC Pro.
36 In a PM3 calculation of the conformers done by J. Rudolph with the program Spartan 2001 (Wavefunction Inc., California) the results of the MNDO-analysis werde confirmed, resulting in conformer A as the conformer with the lowest energy. Although the differences in energy by this method are only 5 kcal/mol and therefore a bit lower as with MNDO, they are still high enough to make any consideration of the conformer B superfluous. (1 kcal = 4.1868 kJ).
37 The energy differences of the µ-O structures are only between 1-3 kcal/mol.
38a
Goldfuss B.
Houk KN.
J. Org. Chem.
1998,
63:
8998
38b
Goldfuss B.
Steigelmann M.
Khan SI.
Houk KN.
J. Org. Chem.
2000,
65:
77
39
Rasmussen T.
Norrby P.-O.
J. Am. Chem. Soc.
2001,
123:
2464
40a
Kitamura M.
Suga S.
Oka H.
Noyori R.
J. Am. Chem. Soc.
1998,
120:
9800
40b
Dahmen, S.; Lauterwasser, F.; Vanderheiden, S.; Bräse, S. unpublished.
40c
Wipf P.
Pierce JG.
Wang X.
Tetrahedron: Asymmetry
2003,
14:
3605 ; and references cited therein
41
Dahmen S.
Bräse S.
Chem. Commun.
2002,
26
42
Nugent WA.
Org. Lett.
2002,
4:
2133
43
Höfener S.
Lauterwasser F.
Bräse S.
Adv. Synth. Catal.
2004,
346:
755
44
Dahmen S.
Bräse S. unpublished
45 Allyl alcohols are substrates for, e.g., cyclopropanation reactions, aziridination reactions, ene-reactions, epoxidations, dihydroxylations, methoxy selenations, iodo hydroxylations, brominations, and allylic substitution reactions.
46a
Oppolzer W.
Radinov RN.
Tetrahedron Lett.
1988,
29:
5645
46b
Oppolzer W.
Radinov RN.
Tetrahedron Lett.
1991,
32:
5777
47a
Noyori R.
Kitamura M.
Angew. Chem., Int. Ed. Engl.
1991,
30:
49
47b
Kitamura M.
Suga S.
Kawai K.
Noyori R.
J. Am. Chem. Soc.
1986,
108:
6071
48a
Oppolzer W.
Radinov RN.
Helv. Chim. Acta
1992,
75:
170
48b This reaction was recently extended to intramolecular cyclization reactions: Oppolzer W.
Radinov RN.
El-Sayed E.
J. Org. Chem.
2001,
66:
4766
The addition of vinylzinc has also been studied:
49a
von dem Bussche-Hünnefeld JL.
Seebach D.
Tetrahedron
1992,
48:
5719
49b
Soai K.
Takahashi K.
J. Chem. Soc., Perkin Trans. 1
1994,
1257
49c
Shibata T.
Nakatsui K.
Soai K.
Inorg. Chim. Acta
1999,
296:
33
50a
Wipf P.
Xu W.
Tetrahedron Lett.
1994,
35:
5197
50b
Wipf P.
Xu W.
Org. Synth.
1997,
74:
205
50c
Wipf P.
Ribe S.
J. Org. Chem.
1998,
63:
6454
51
Dahmen S.
Bräse S.
Org. Lett.
2001,
3:
4119
52 Using these modifications, the aldehyde could be added in one portion, which is a significant practical improvement over the original Oppolzer protocol, where the aldehyde had to be added over a period of 20 min to obtain high enantioselectivities.
53 The absolute configuration was assigned by comparison of the optical rotation with the literature known compounds (S)-1-(4-chlorophenyl)hept-2-en-1-ol and (S)-1-phenylnon-2-en-1-ol, respectively, and the assumption of a unanimous reaction pathway for all other aldehyde substrates. The absolute configuration of the allyl alcohol products 51 is consistent with the induction observed in the diethylzinc addition to aldehydes with the ligands 5a and 6a.
54a
Nehl H.
Scheidt W.
J. Organomet. Chem.
1985,
289:
1
54b
Mynott R.
Gabor B.
Lehmkuhl H.
Doering I.
Angew. Chem., Int. Ed. Engl.
1985,
24:
335
55a
Bolm C.
Hermanns N.
Hildebrand JP.
Muniz K.
Angew. Chem. Int. Ed.
2000,
39:
3465 ; Angew. Chem. 2000, 112, 3607
55b
Blacker J. In Proceedings of the 3rd International Conference on the Scale Up of Chemical Processes
Laird T.
Scientific Update;
Mayfieldn / East Sussex / Great Britain:
1998.
56
Alvaro G.
Pacioni P.
Savoia D.
Chem.-Eur. J.
1997,
3:
726
57
Modern Acetylene Chemistry
Stang PJ.
Diederich F.
VCH;
Weinheim:
1995.
58 For a recent review, see: Pu L.
Tetrahedron
2003,
59:
9873
59
Ishizaki M.
Hoshino O.
Tetrahedron: Asymmetry
1994,
5:
1901
60a
Frantz DE.
Fässler R.
Carreira EM.
J. Am. Chem. Soc.
2000,
122:
1806
60b
Boyall D.
López F.
Sasaki H.
Frantz D.
Carreira EM.
Org. Lett.
2000,
2:
4233
60c
Frantz DE.
Fässler R.
Tomooka CS.
Carreira EN.
Acc. Chem. Res.
2000,
33:
373
60d
Anand NK.
Carreira EN.
J. Am. Chem. Soc.
2001,
123:
9687
61 Zn(OTf)2 is ten times more expensive than diethylzinc: Zn(OTf)2: 10 g 46.80 $ ( = 1 $/mmol), Et2Zn in hexane: 100 g (810 mmol) 80.90 $ (= 0.1 $/mmol). Prices taken from Acros Organics.
62
Xu M.-H.
Pu L.
Org. Lett.
2002,
4:
4555
63
Bolm C.
Rudolph J.
J. Am. Chem. Soc.
2002,
124:
14850
64 This behavior is untypical for mixed zinc species. The equilibrium could be influenced by the very low solubility of the dialkynylzinc reagents.
65 The clear supernant solution gives rise to the ethylation product in >80% yield.
For selected references in this field, see:
66a
Bolm C.
Hildebrand JP.
Muniz K.
Hermanns N.
Angew. Chem. Int. Ed.
2001,
40:
3284 ; Angew. Chem. 2001, 113, 3382
66b
Bolm C.
Rudolph J.
J. Am. Chem. Soc.
2002,
124:
14850
66c
Rudolph J.
Schmidt F.
Bolm C.
Adv. Synth. Catal.
2004,
346:
867
For selected APIs, see: (S)-Carbinoxamine:
67a
Roszowski AP.
Govier WM.
Pharmakologist
1959,
1:
60
67b
Hunt JH.
J. Chem. Soc.
1961,
2228
67c
Barouh V.
Dall H.
Patel D.
Hite G.
J. Med. Chem.
1971,
14:
834
67d
James MNG.
Williams GJB.
Can. J. Chem.
1974,
52:
1872
67e (R)-Neobenodin and (R)-orphenadrin:
67f
Casy AF.
Drake AF.
Ganellin CR.
Mercer AD.
Chirality
1992,
4:
356
67g
van der Stelt C.
Heus WJ.
Nauta WT.
Arzneim.-Forsch.
1969,
19:
2010
67h
Rekker RF.
Timmerman H.
Harms AF.
Nauta WT.
Arzneim.-Forsch.
1971,
21:
688
68a
Corey EJ.
Helal CJ.
Tetrahedron Lett.
1995,
36:
9153
68b
Corey EJ.
Helal CJ.
Tetrahedron Lett.
1996,
37:
4837
68c
Corey EJ.
Helal CJ.
Tetrahedron Lett.
1996,
37:
5675
68d
Corey EJ.
Helal CJ.
Angew. Chem. Int. Ed.
1998,
37:
1986 ; Angew. Chem. 1998, 110, 2092
69a
Okhuma T.
Koizumi M.
Ikehira H.
Yokozawa T.
Noyori R.
Org. Lett.
2000,
2:
659
69b
Noyori R.
Okhuma T.
Pure Appl. Chem.
1999,
71:
1493
70
Hermanns N.
PhD Thesis
RWTH;
Aachen:
2002.
71
Rudolph J.
PhD Thesis
RWTH;
Aachen:
2004.
72a
Dahmen S.
Bräse S.
J. Am. Chem. Soc.
2002,
124:
5940
72b
Hermanns N.
Dahmen S.
Bolm C.
Bräse S.
Angew. Chem. Int. Ed.
2002,
41:
3692 ; Angew. Chem. 2002, 114, 3844
73 Bräse, S.; Dahmen, S.; Vogt, H. to be submitted.
74
Knepper K.
Ziegert RE.
Bräse S.
Tetrahedron
2004,
60:
8591