References
1
Stetter H.
Frank W.
Mertens R.
Tetrahedron
1981,
37:
767
2a
Costa J.
Delgado R.
Inorg. Chem.
1993,
32:
5257
2b
Delgado R.
Quintino S.
Teixeira M.
Zhang A.
J. Chem. Soc., Dalton Trans.
1996,
55
2c
Félix V.
Costa J.
Delgado R.
Drew MGB.
Duarte MT.
Resende C.
J. Chem. Soc., Dalton Trans.
2001,
1462
3
Kim WD.
Hrncir DC.
Kiefer GE.
Sherry AD.
Inorg. Chem.
1995,
34:
222
4
Aime S.
Botta M.
Crich SG.
Giovenzana GB.
Jommi G.
Pagliarin R.
Sisti M.
Inorg. Chem.
1997,
36:
2992
5a
Favre-Reguillon A.
Segat-Dioury F.
Nait-Bouda L.
Cosma C.
Siaugue J.-M.
Foos J.
Guy A.
Synlett
2000,
868
5b
Siaugue J.-M.
Favre-Reguillon A.
Dioury F.
Plancque G.
Foos J.
Madic C.
Moulin C.
Guy A.
Eur. J. Inorg. Chem.
2003,
2834
6a
Herrera AM.
Staples RJ.
Kryatov SV.
Nazarenko AY.
Rybak-Akimova EV.
J. Chem. Soc., Dalton Trans.
2003,
846
6b
Herrera AM.
Kalayda GV.
Disch JS.
Wilkstrom JP.
Korendovych IV.
Staples RJ.
Campana CF.
Nazarenko AY.
Haas TE.
Rybak-Akimova EV.
J. Chem. Soc., Dalton Trans.
2003,
4482
7a
Pandey GK.
Srivastava S.
Pandey OP.
Sengupta SK.
Indian J. Chem., Sect. A
1998,
447
7b
Sharma K.
Swaroop R.
Singh RV.
Heterocycl. Commun.
2001,
393
8a
Denat F.
Lacour S.
Brandès S.
Guilard R.
Tetrahedron Lett.
1997,
38:
4417
8b
Brandès S.
Denat F.
Lacour S.
Rabiet F.
Barbette F.
Pullumbi P.
Guilard R.
Eur. J. Org. Chem.
1998,
2349
9
Lüning U.
Liebigs Ann. Chem.
1987,
949
10a
Beletskaya IP.
Averin AD.
Bessmertnykh AG.
Guilard R.
Tetrahedron Lett.
2001,
42:
4983
10b
Beletskaya IP.
Averin AD.
Bessmertnykh AG.
Guilard R.
Tetrahedron Lett.
2001,
42:
4987
10c
Beletskaya IP.
Averin AD.
Borisenko AA.
Denat F.
Guilard R.
Tetrahedron Lett.
2003,
44:
1433
11
Wagaw S.
Buchwald SL.
J. Org. Chem.
1996,
61:
7240
12
Grasa GA.
Viciu MS.
Huang J.
Nolan SP.
J. Org. Chem.
2001,
66:
7729
13
Jonckers THM.
Maes BUW.
Lemiere GLF.
Dommisse R.
Tetrahedron
2001,
57:
7027
14
Maes BW.
Loones KT.
Jonckers TH.
Lemiere GL.
Dommisse R.
Haemers A.
Synlett
2002,
1995
15a
Gradel B.
Brenner E.
Schneider R.
Fort Y.
Tetrahedron Lett.
2001,
42:
5689
15b
Desmarets C.
Schneider R.
Fort Y.
Tetrahedron Lett.
2001,
42:
247
15c
Desmarets C.
Schneider R.
Fort Y.
Tetrahedron
2001,
57:
7657
16
Wolfe JP.
Buchwald SL.
J. Org. Chem.
2000,
65:
1144
17a
Den Hertog HJ.
Wibaut JP.
Recl. Trav. Chim. Pays-Bas
1936,
55:
122
17b
Den Hertog HJ.
de Jonge AP.
Recl. Trav. Chim. Pays-Bas
1948,
67:
385
18
Wolfe JP.
Tomori H.
Sadighi JP.
Yin J.
Buchwald SL.
J. Org. Chem.
2000,
65:
1158
19
Zhang X.-X.
Buchwald SL.
J. Org. Chem.
2000,
65:
8027
20
Typical Procedure: An argon-flushed flask is charged with 2,6-dibromopyridine (1 mmol, 237 mg), 4-8 mol% Pd(dba)2 (23-46 mg), 4.5-12 mol% BINAP (27-82 mg), appropriate polyamine (1-6 mmol), 5-100 mL of absolute dioxane, and NaOt-Bu (2.25-4 mmol). The mixture is refluxed for 5-22 h, cooled to ambient temperature and several drops of H2O are added. Dioxane is evaporated in vacuo, the residue is taken up with CH2Cl2 (20 mL) and washed once with H2O (10 mL), aqueous layer is extracted 3 times with CH2Cl2 (15 mL), combined organic fractions are dried over Na2SO4. CH2Cl2 is evaporated in vacuo, and crude material is chromatographed on a small amount of silica (4-5 mL) to minimize loss of the macrocycle, using a sequence of eluents: CH2Cl2, CH2Cl2-MeOH 100:1, 50:1, 25:1, 10:1, 3:1, CH2Cl2-MeOH-NH3 (aq) 100:20:1, 100:20:2, 100:20:3, 10:3:1. Chromatography can be done without prior treatment of the reaction mixture with H2O.
21 Selected spectroscopic data:
Compound 3a: mp 71-73 °C. IR (KBr): ν = 3254, 2937, 2879, 1604, 1521, 1459, 1361, 1340, 1261, 1240, 1143, 1106, 775, 724, 700 cm-1. UV/Vis (MeOH): λmax (ε) = 252 (11600), 320 (10400) nm. 1H NMR (400 MHz, CDCl3): δ = 1.71 (q, 4 H, J = 5.4 Hz), 2.63 (t, 4 H, J = 5.3 Hz), 2.68 (s, 4 H), 3.37 (q, 4 H, J = 5.2 Hz), 3.40 (br s, 2 H), 5.57 (d, 2 H,
J = 7.9 Hz), 5.67 (br s, 2 H), 7.14 (t, 1 H, J = 7.9 Hz) ppm. 13C NMR (100.6 MHz, CDCl3): δ = 30.2 (2 C), 40.5 (2 C), 47.4 (2 C), 49.3 (2 C), 94.0 (2 C), 138.7 (1 C), 158.8 (2 C) ppm. MS (70eV) m/z (%) = 249 (100) [M+], 162 (63), 148 (33), 136 (85), 123 (50). MALDI-TOF: m/z = 250.1 [M + H]+.
Compound 4a: oil. IR (KBr): ν = 3290, 2929, 2838, 1591, 1488, 1453, 1449, 1557, 1326, 1237, 1151, 1140, 1036, 886, 783, 729. UV/Vis (MeOH): λmax (ε) = 246 (8600), 302 (5300) nm. 1H NMR (400 MHz, CDCl3): δ = 1.53 s (9 H), 1.63 (q, 2 H, J = 6.7 Hz), 1.78 (q, 2 H, J = 6.7 Hz), 2.11 (br s, 4 H), 2.68 (t, 2 H, J = 6.7 Hz), 2.72 (s, 4 H), 2.73 (t, 2 H, J = 6.7 Hz), 2.76 (t, 2 H, J = 6.7 Hz), 3.31 (t, 2 H, J = 6.7 Hz), 4.75 (br s, 1 H), 5.89 (d, 1 H, J = 7.4 Hz), 5.92 (d, 1 H, J = 7.6 Hz), 7.24 (t, 1 H, J = 7.9 Hz) ppm. 13C NMR (100.6 MHz, CDCl3): δ = 28.8 (3 C), 29.5 (1 C), 33.6 (1 C), 40.1 (1 C), 40.6 (1 C), 47.5 (1 C), 47.8 (1 C), 49.2 (1 C), 49.3 (1 C), 78.4 (1 C), 97.8 (1 C), 100.2 (1 C), 139.2 (1 C), 157.3 (1 C), 163.0 (1 C) ppm. MALDI-TOF: m/z = 324.3 [M + H]+.
Compound 7: oil. 1H NMR (400 MHz, CDCl3): δ = 1.79 (q, 4 H, J = 6.3 Hz), 2.75 (t, 4 H, J = 6.3 Hz), 2.76 (s, 4 H), 3.34 (t, 4 H, J = 6.3 Hz), 5.38 (br s, 2 H), 6.25 (d, 2 H, J = 8.2 Hz), 6.52 (d, 2 H, J = 7.7 Hz), 7.29 (t, 2 H, J = 8.0 Hz) ppm; two NH protons were not assigned. 13C NMR (100.6 MHz, CDCl3): δ = 28.9 (2 C), 40.7 (2 C), 47.6 (2 C), 48.8 (2 C), 104.5 (2 C), 111.4 (2 C), 139.5 (2 C), 147.8 (2 C), 158.9 (2 C) ppm. MALDI-TOF: m/z = 397.6 [M + H]+.