References
1
Tilstam U.
Weinmann H.
Org. Process Res. Dev.
2002,
6:
384
2a
Falorni M.
Porcheddu A.
Taddei M.
Tetrahedron Lett.
1999,
40:
4395
2b
Falorni M.
Giacomelli G.
Porcheddu A.
Taddei M.
J. Org. Chem.
1999,
64:
8962
2c
Falchi A.
Giacomelli G.
Porcheddu A.
Taddei M.
Synlett
2000,
275
2d
De Luca L.
Giacomelli G.
Taddei M.
J. Org. Chem.
2001,
66:
2534
2e
De Luca L.
Giacomelli G.
Porcheddu A.
Org. Lett.
2001,
3:
1519
2f
De Luca L.
Giacomelli G.
Porcheddu A.
Org. Lett.
2002,
4:
553
2g
De Luca L.
Giacomelli G.
Porcheddu A.
J. Org. Chem.
2002,
67:
5152
2h
De Luca L.
Giacomelli G.
Porcheddu A.
J. Org. Chem.
2002,
67:
6272
2i
Giacomelli G.
Porcheddu A.
Salaris M.
Org. Lett.
2003,
5:
2715
3a
De Luca L.
Giacomelli G.
Porcheddu A.
Org. Lett.
2001,
3:
3041
3b
De Luca L.
Giacomelli G.
Masala S.
Porcheddu A.
J. Org. Chem.
2003,
68:
4999
4
De Luca L.
Giacomelli G.
Synlett
2004,
2180
5a
Fieser M.
Fieser LF.
Reagents for Organic Synthesis
John Wiley and Sons;
New York:
1967.
p.78
5b
Barton DRH.
Ollis WD.
Comprehensive Organic Chemistry
Vol. 2:
Trost BM.
Fleming I.
Pergamon Press;
Oxford:
1979.
p.1030
6
Daoust B.
Lessard J.
Tetrahedron
1999,
55:
3495 ; and references therein
7a
Poisel H.
Schmidt U.
Angew. Chem., Int. Ed. Engl.
1976,
15:
294
7b
Poisel H.
Chem. Ber.
1977,
110:
948
7c
Kolar AJ.
Olsen RK.
Synthesis
1977,
457
8
Drago RS.
Wenz DA.
Carlson RJ.
J. Am. Chem. Soc.
1962,
84:
1106
9
Bachand C.
Driguez H.
Paton JM.
Touchard D.
Lessard J.
J. Org. Chem.
1974,
39:
3136
10
Zimmer H.
Audrieth LF.
J. Am. Chem. Soc.
1954,
76:
3856
11
Curini M.
Epifano F.
Marcotullio MC.
Rosati O.
Tsadjout A.
Synlett
2000,
813
12
Larionov OV.
Kozhushkov SI.
de Meijere A.
Synthesis
2003,
1916
13 All solvents and reagents were used as obtained from commercial source. Standard 1H NMR and 13C NMR were recorded at 300 MHz and 75.4 MHz, from CDCl3 solutions. Mass spectra were recorded at 70 eV with a direct probe for sample introduction. All known compounds have analytical data corresponding to literature data. All runs were conducted at least in duplicate.
Typical Procedure for the Preparation of N
-Chloro-amides.
Trichloroisocyanuric acid (5.25 mmol) was added at 0 °C to a well stirred solution of the amide (5 mmol) in CH2Cl2 (30 mL) and the mixture was kept at r.t. for the required time, monitoring (TLC) till completion. Then the mixture was filtered on Celite and the solution evaporated under reduced pressure affording the N-chloro derivative.
Spectroscopic Data of Selected Compounds:
(
S
)
-
2-(
N
-Chloroamino-
N
-
tert
-butoxycarbonyl)-3-phenylpropanoic Acid (
9): [α]D
25 -54.98 (c 1, CH2Cl2). 1H NMR: δ = 10.51 (s, 1 H), 7.35-7.05 (m, 5 H), 4.60 (m, 1 H), 3.35-2.92 (m, 2 H), 1.40 (s, 9 H) ppm. 13C NMR: δ = 174.9, 156.0, 139.4, 128.9, 128.5, 127.1, 79.5, 54.4, 37.7, 28.2 ppm. MS (ES+): m/e (relative intensity) = 301 (32), 300(1), 299 (100). IR (film): 1255 cm-1.
(
S
)-Methyl 2-(
N
-Chloramino-
N
-benzyloxycarbonyl)-4-methylpentanoate (
12): [α]D
20 -19.81 (c 0.5, CH2Cl2). 1H NMR: δ = 7.40-7.30 (m, 5 H), 5.27 (s, 2 H), 4.99 (dd, J = 3.90, 11.70 Hz, 1 H), 3.70 (s, 3 H), 2.06-1.85 (m, 1 H), 1.77-1.59 (m, 2 H), 0.94 (d, 6 H) ppm. 13C NMR: δ = 170.3, 156.2, 135.3, 128.9, 128.5, 127.8, 66.9, 53.4, 52.4, 41.6, 24.2, 23.0, 20.7 ppm. MS (ES+): m/e (relative intensity) = 315 (34), 314 (15), 313 (100). IR (film): 1243 cm-1.
(2
S
,3
S
)-2-
N-
Chloramino-
N
-benzyloxycarbonyl)-3-methylpentanoic Acid (
13): [α]D
20 -4.52 (c 0.5, CH2Cl2). 1H NMR δ = 7.37-7.29 (m, 5 H), 5.08 (s, 2 H), 4.43-4.33 (m, 1 H), 2.02-1.80 (m, 1 H), 1.62-1.39 (m, 1 H), 1.28-1.13 (m, 1 H), 0.92 (m, 6 H) ppm. 13C NMR: δ = 173.8, 156.3, 135.1, 128.8, 128.4, 128.2, 69.4, 58.2, 37.5, 24.6, 15.4, 10.3 ppm. MS (ES+): m/e (relative intensity) = 301 (32), 300(6), 299 (100). IR (film): 1267 cm-1.
(
S
)-Methyl 2-[
N
-Chloramino-
N
-(9
H
-fluoren-9-yl)meth-oxycarbonyl]-3-methylbutanoate (
14): [α ]D
20 -4.13 (c 0.1, CH2Cl2). 1H NMR: δ = 7.62 (d, 2 H), 7.56 (d, 2 H), 7.26-7.13 (m, 4 H), 4.47-4.35 (m, 2 H), 4.30 (m, 1 H), 4.19 (t, 1 H), 3.76 (s, 3 H), 2.25-2.10 (m, 1 H), 0.97 (d, 3 H), 0.92 (d, 3 H) ppm. 13C NMR: δ = 172.6, 156.0, 145.4, 138.7, 128.9, 128.1, 125.4, 120.9, 67.8, 59.0, 53.4, 52.2, 31.1, 18.8, 17.5 ppm. MS (ES+): m/e (relative intensity) = 389 (35), 387 (100), 388 (19), 390 (5). IR (film): 1216 cm-1. Anal. Calcd for C21H22ClNO4 (387.86): C, 65.03; H, 5.72; Cl, 9.14; N, 3.61. Found: C, 65.05; H, 5.78; Cl, 9.18; N, 3.64.
(
S
)-2-[
N
-Chloramino-
N
-(9
H
-fluoren-9-yl)methoxy-carbonyl]-3-hydroxypropanoic Acid (
15): [α]D
20 -11.96 (c 0.2, CH2Cl2). 1H NMR: δ = 10.41 (s, 1 H), 7.43 (d, 2 H), 7.27-7.12 (m, 6 H), 6.47 (br s, 1 H), 4.46 (s, 2 H), 4.18-3.70 (m, 4 H) ppm. 13C NMR: δ = 173.8, 156.6, 145.2, 144.8, 129.0, 128.2, 125.2, 120.8, 67.9, 55.9, 46.8 ppm. MS (ES+): m/e (relative intensity) = 363 (28), 361 (100), 336 (19), 364 (5). IR (film): 1230 cm-1. Anal. Calcd for C18H16ClNO5 (361.07): C, 59.76; H, 4.46; Cl, 9.80; N, 3.87. Found: C, 59.72; H, 4.48; Cl, 9.80; N, 3.84.
14
Typical Procedure for the Preparation of N
-Chloroamides from Primary Amides.
Trichloroisocyanuric acid (1.60 mmol) was added slowly, in small portions, and at 0 °C to a well stirred solution of the amide (5 mmol) in dry acetone:CHCl3 (1:2 solution, 30 mL) and the mixture was kept at r.t. for the required time, monitoring (TLC) till completion. Then the mixture was filtered on Celite and the solution evaporated under reduced pressure affording the N-chloro derivatives 16 and 17.
[13]
[16]
15
De Rosa M.
Brown K.
McCoy M.
Ong K.
Sanford K.
J. Chem. Soc., Perkin Trans. 2
1993,
1787
16
De Sarlo F.
Guarna A.
Brandi A.
Mascagni P.
Gazz. Chim. Ital.
1980,
110:
341
17
Roberts JT.
Rittberg BR.
Kovacic P.
J. Org. Chem.
1981,
46:
3988
18
Johnson RA.
Greene FD.
J. Org. Chem.
1975,
40:
2186
19
Goosen A.
McCleland CW.
Merrifield AJ.
J. Chem. Soc., Perkin Trans. 1
1992,
627