Subscribe to RSS
DOI: 10.1055/s-2004-861535
Complications of Radiation Therapy on the Brain and Spinal Cord
Publication History
Publication Date:
07 January 2005 (online)
ABSTRACT
Various nervous system complications can result from radiation therapy. Usually classified according to the timing of onset after irradiation, these complications can be debilitating and even life-threatening. A better knowledge of the risk factors has allowed the definition of “safe” procedures that have reduced the incidence of severe sequelae. This review addresses the main clinical, radiological, biological, and therapeutic issues pertaining to the side effects of radiation therapy on the brain and spinal cord, including radiation-induced vascular and endocrine complications.
KEYWORDS
Radiotherapy - encephalopathy - glioma - arteriopathy - dementia - cognitive impairment - endocrine dysfunction - myelopathy - radio-induced tumor
REFERENCES
- 1 Young D F, Posner J B, Chu F, Nisce L. Rapid-course radiation therapy of cerebral metastases: results and complications. Cancer. 1974; 34 1069-1076
- 2 Hindo W A, DeTrana F A, Lee M S, Hendrickson F R. Large dose increment irradiation in treatment of cerebral metastases. Cancer. 1970; 26 138-141
- 3 Posner J B. Side effects of radiation therapy. In: Posner JB Neurologic Complications of Cancer. Philadelphia; FA Davis 1995: 311-337
- 4 Keime-Guibert F, Napolitano M, Delattre J Y. Neurological complications of radiotherapy and chemotherapy. J Neurol. 1998; 245 695-708
- 5 Phillips P C, Delattre J Y, Berger C A, Rottenberg D A. Early and progressive increases in regional brain capillary permeability following single- and fractionated-dose cranial radiation in rat. Neurology. 1987; 37 301 , (Abstract)
- 6 Freeman J, Johnstone P, Voke J. Somnolence after prophylactic cranial irradiation in children with acute leukaemia. BMJ. 1973; 290 523-525
- 7 Littman P, Rosenstock J, Gale G et al.. The somnolence syndrome in leukemic children following reduced daily dose fractions of cranial radiation. Int J Radiat Oncol Biol Phys. 1984; 10 1851-1853
- 8 Ch'ien L T, Aur R J, Stagner S et al.. Long-term neurological implications of somnolence syndrome in children with acute lymphocytic leukemia. Ann Neurol. 1980; 8 273-277
- 9 Faithfull S, Brada M. Somnolence syndrome in adults following cranial irradiation for primary brain tumours. Clin Oncol (R Coll Radiol). 1998; 10 250-254
- 10 Mandell L, Walker W, Steinherz P, Fuks Z. Reduced incidence of the somnolence syndrome in leukemic children with steroid coverage during prophylactic cranial radiation therapy. Cancer. 1989; 63 1975-1978
- 11 Armstrong C, Ruffer J, Corn B W, Devriees K, Mollman J. Biphasic patterns of memory deficits following moderate-dose partial-brain irradiation: neuropsychologic outcome and proposed mechanisms. J Clin Oncol. 1995; 13 2263-2271
- 12 Vigliani M C, Sichez N, Poisson M, Delattre J Y. A prospective study of cognitive functions following conventional radiotherapy for supratentorial gliomas in young adults: 4 year results. Int J Radiat Oncol Biol Phys. 1996; 35 527-533
- 13 Chak L Y, Zatz L M, Wasserstein P et al.. Neurological dysfunction in patients treated for small cell carcinoma of the lung: a clinical radiological study. Int J Radiat Oncol Biol Phys. 1986; 12 385-389
- 14 Créange A, Felten D, Kiesel I, Renard J L, Vespignani H, Béquet D. Leucoencéphalopathie subaiguë du rhombencéphale après radiothérapie hypophysaire. Rev Neurol. 1994; 150 704-708
- 15 Lampert P, Tom M I, Rider W D. Disseminated demyelination of the brain following Co60 radiation. Arch Pathol. 1959; 68 322-330
- 16 Malone S, Raaphorst G P, Gray R, Girard A, Alsbeih G. Enhanced in vitro radiosensitivity of skin fibroblasts in two patients developing brain necrosis following AVM radiosurgery: a new risk factor with potential for a predictive assay. Int J Radiat Oncol Biol Phys. 2000; 47 185-189
- 17 Flickinger J C, Kondziolka D, Lunsford L D et al.. Development of a model to predict permanent symptomatic postradiosurgery injury for arteriovenous malformation patients: arteriovenous malformation study group. Int J Radiat Oncol Biol Phys. 2000; 46 1143-1148
- 18 Schlienger M, Atlan D, Lefkopooulos D et al.. Linac radiosurgery for cerebral arteriovenous malformations: results in 169 patients. Int J Radiat Oncol Biol Phys. 2000; 46 1135-1142
- 19 Miyawaki L, Dowd C, Wara W et al.. Five year results of LINAC radiosurgery for arteriovenous malformations: outcome for large AVMs. Int J Radiat Oncol Biol Phys. 1999; 44 1089-1106
- 20 Delattre J Y, Posner J B. Neurological complications of chemotherapy and radiation therapy. In: Aminoff MJ Neurology and General Medicine. 2nd ed. New York; Churchill Livingstone 1995: 421-445
- 21 Oppenheimer J H, Levy M L, Sinha U et al.. Radionecrosis secondary to interstitial brachytherapy: correlation of magnetic resonance magnetic imaging and histopathology. Neurosurgery. 1992; 31 336-343
- 22 Van Effenterre R, Boch A L. Radionécrose du chiasma. Neurochirurgie. 1993; 39 75-84
- 23 Coghlan K M, Magennis P. Cerebral radionecrosis following the treatment of parotid tumours: a case report and review of the literature. Int J Oral Maxillofac Surg. 1999; 28 50-52
- 24 Kumar A J, Leeds N E, Fuller G N et al.. Malignant gliomas: MR imaging spectrum of radiation therapy- and chemotherapy-induced necrosis of the brain after treatment. Radiology. 2000; 217 377-384
- 25 Janus T J, Kim E E, Tilbury R, Bruner J M, Yung W K. Use of [18F]fluorodeoxyglucose positron emission tomography in patients with primary malignant brain tumors. Ann Neurol. 1993; 33 540-548
- 26 Lamy-Lhuillier C, Dubois F, Blond S, Lecouffe P, Steinling M. Intérêt de la tomoscintigraphie cérébrale au sestamibi marqué au technétium dans le diagnostic différentiel récidive tumorale-radionécrose des tumeurs gliales sus-tentorielles de l'adulte. Neurochirurgie. 1999; 45 110-117
- 27 Ricci P E, Karis J P, Heiserman J E, Fram E K, Bice A N, Drayer B P. Differentiating recurrent tumor from radiation necrosis: time for re-evaluation of positron emission tomography. AJNR Am J Neuroradiol. 1998; 19 407-413
- 28 Matheja P, Rickert C, Weckesser M, Hoss N, Schober O. Scintigraphic pitfall: delayed radionecrosis. Case illustration. J Neurosurg. 2000; 92 732
- 29 Forsyth P A, Kelly P J, Cascino T L et al.. Radiation necrosis or glioma recurrence: is computer-assisted stereotactic biopsy useful?. J Neurosurg. 1995; 82 436-444
- 30 Glantz M J, Burger P C, Friedman A H, Radtke R A, Massey E W, Schold Jr S C. Treatment of radiation induced nervous system injury with heparin and warfarin. Neurology. 1994; 44 2020-2027
- 31 Chuba P J, Aronin P, Bhambhani K et al.. Hyperbaric oxygen therapy for radiation-induced brain injury in children. Cancer. 1997; 80 2005-2012
- 32 Leber K A, Eder H G, Kovac H, Anegg U, Pendl G. Treatment of cerebral radionecrosis by hyperbaric oxygen therapy. Stereotact Funct Neurosurg. 1998; 70 229-236
- 33 Kohshi K, Imada H, Nomoto S, Yamaguchi R, Abe H, Yamamoto H. Successful treatment of radiation-induced brain necrosis by hyperbaric oxygen treatment. J Neurol Sci. 2003; 209 115-117
- 34 Chan A S, Cheung M C, Law S C, Chan J H. Phase II study of alpha-tocopherol in improving the cognitive function of patients with temporal lobe radionecrosis. Cancer. 2004; 100 398-404
- 35 Tofilon P J, Fike J R. The radioresponse of the central nervous system: a dynamic process. Radiat Res. 2000; 153 357-370
- 36 Schultheiss T E, Stephens L C. Permanent radiation myelopathy. Br J Radiol. 1992; 65 737-753
- 37 Calvo W, Hopewell J W, Reinhold H S, Yeung T K. Time- and dose-related changes in the white matter of the rat brain after single doses of X-rays. Br J Radiol. 1988; 61 1043-1052
- 38 Reinhold H S, Calvo W, Hopewell J W, Van der Berg A P. Development of blood vessel-related radiation damage in the fimbria of the central nervous system. Int J Radiat Oncol Biol Phys. 1990; 18 37-42
- 39 Delattre J Y, Rosenblum L K, Thaler H R, Mandell L, Shapiro W R, Posner J B. A model of radiation myelopathy in the rat. Brain. 1988; 111 1319-1336
- 40 Morris G M, Coderre J A, Micca P L, Fisher C, Capala J, Hopewell J A. Central nervous system tolerance to boron neutron capture therapy with p-boronophenylalanine. Br J Cancer. 1997; 76 1623-1629
- 41 Van der Maazen R WM, Berhagen I, Kleiboer B J, van der Kogel A J. Radiosensitivity of glial progenitor cells of the perinatal and adult rat optic nerve studied by an in vitro clonogenic assay. Radiother Oncol. 1991; 20 258-264
- 42 Van der Maazen R WM, Kleiboer B J, Berhagen I, van der Kogel A J. Irradiation in vitro discriminates between different O-2A progenitor cell subpopulations in the perinatal central nervous system of rats. Radiat Res. 1991; 128 64-72
- 43 Van der Maazen R WM, Kleiboer B J, Berhagen I, van der Kogel A J. Repair capacity of adult rat glial progenitor cells determined by an in vitro clonogenic assay after in vitro or in vivo fractionated irradiation. Int J Radiat Biol. 1993; 63 661-666
- 44 Hornsey S, Myers R, Coultas P G, Rogers M A, White A. Turnover of proliferative cells in the spinal cord after x irradiation and its relation to time-dependent repair of radiation damage. Br J Radiol. 1981; 54 1081-1085
- 45 Asai A, Matsutani M, Kohno T et al.. Subacute brain atrophy after radiation therapy for malignant brain tumor. Cancer. 1989; 63 1962-1974
- 46 Enokido Y, Araki T, Tanaka K, Aizawa S, Hatanaka H. Involvement of p53 in DNA strand break-induced apoptosis in postmitotic CNS neurons. Eur J Neurosci. 1996; 8 1812-1821
- 47 Gobbel G T, Bellinzona M, Vogt A R, Gupta N, Fike J R, Cha P H. Response of postmitotic neurons to X-irradiation: implications for the role of DNA damage in neuronal apoptosis. J Neurosci. 1998; 18 147-155
- 48 Noel F, Tofilon P J. Astrocytes protect against x-ray-induced neuronal toxicity in vitro. Neuroreport. 1998; 9 1133-1137
- 49 Montgomery D L. Astrocytes: form, function and roles in disease. Vet Pathol. 1994; 31 145-167
- 50 Muller H W, Junghans U, Kappler J. Astroglial neurotrophic and neurite-promoting factors. Pharmacol Ther. 1995; 65 1-18
- 51 Ridet J L, Malhotra S K. Reactive astrocytes: cellular and molecular clues to biological function. Trends Neurosci. 1997; 20 570-577
- 52 Chiang C S, McBride W H, Withers H R. Radiation-induced astrocytic and microglial responses in mouse brain. Radiother Oncol. 1993; 29 60-68
- 53 Barres B A, Raff M C. Proliferation of oligodendrocyte precursor cells depends on electrical activity in axons. Nature. 1993; 361 258-260
- 54 Wilson J X. Antioxidant defense of the brain: a role for astrocytes. Can J Physiol Pharmacol. 1997; 75 1149-1163
- 55 Schroeter M L, Mertsch K, Giese H et al.. Astrocytes enhance radical defence in capillary endothelial cells constituting the blood-brain barrier. FEBS Lett. 1999; 449 241-244
- 56 Iwata-Ichikawa E, Kondo Y, Miyazaki I, Asanuma M, Ogawa N. Glial cells protect neurons against oxidative stress via transcriptional up-regulation of the glutathione synthesis. J Neurochem. 1999; 72 2334-2344
- 57 Desagher S, Glowinski J, Premont J. Astrocytes protect neurons form hydrogen peroxyde toxicity. J Neurosci. 1996; 16 2553-2562
- 58 Janzer R C, Raff M C. Astrocytes induce blood-brain barrier properties in endothelial cells. Nature. 1987; 325 253-257
- 59 Nakagawa M, Bellinzona M, Seilhan T M, Gobbel G T, Lamborn K R, Fike J R. Microglial responses after focal radiation-induced injury are affected by alpha-difluoromethylornithine. Int J Radiat Oncol Biol Phys. 1996; 36 113-123
- 60 Zucker-Franklin D, Warfel A, Grusky G, Frangione B, Teitel D. Novel monocyte-like properties of microglial/astroglial cells. Constitutive secretion of lysozyme and cystatin-C. Lab Invest. 1987; 57 176-185
- 61 Thomas W E. Brain macrophages: evaluation of microglia and their function. Brain Res Brain Res Rev. 1992; 17 61-74
- 62 Hopewell J W, Cavanagh J B. Effects of X irradiation on the mitotic activity of the subependymal plate of rats. Br J Radiol. 1972; 45 461-465
- 63 Tada E, Yang E, Gobbel G T, Lamborn K R, Fike J R. Long-term impairment of subependymal repopulation following damage by ionizing irradiation. Exp Neurol. 1999; 160 66-77
- 64 Imperato J P, Paleologos N A, Vick N A. Effects of treatment on long-term survivors with malignant gliomas. Ann Neurol. 1990; 28 818-822
- 65 Vigliani M C, Duyckaerts C, Delattre J Y. Radiation-induced cognitive dysfunction in adults. In: Vecht CJ Handbook of Clinical Neurology. Vol. 23. Amsterdam; Elsevier Science 1997: 371-388
- 66 Archibald Y M, Lunn D, Ruttan L A et al.. Cognitive functioning in long-term survivors of high-grade glioma. J Neurosurg. 1994; 80 247-253
- 67 Lee P WH, Hung B KM, Woo E KW, Tai P TH, Choi D TK. Effects of radiation therapy on neuropsychological functioning in patients with nasopharyngeal carcinoma. J Neurol Neurosurg Psychiatry. 1989; 52 488-492
- 68 DeAngelis L M, Delattre J Y, Posner J B. Radiation-induced dementia in patients cured of brain metastases. Neurology. 1989; 39 789-796
- 69 Siegal T, Lossos A, Pfeffer M R. Leptomeningeal metastases: analysis of 31 patients with sustained off-therapy response following combined-modality therapy. Neurology. 1994; 44 1463-1469
- 70 DeAngelis L M, Yahalom J, Thaler H T, Kher U. Combined modality therapy for primary CNS lymphoma. J Clin Oncol. 1992; 10 635-643
- 71 Abrey L E, Yahalom J, DeAngelis L M. Treatment for primary CNS lymphoma: the next step. J Clin Oncol. 2000; 18 3144-3150
- 72 Taphoorn M J, Klein M. Cognitive deficits in adult patients with brain tumours. Lancet Neurol. 2004; 3 159-168
- 73 Klein M, Engelberts N H, van der Ploeg H M et al.. Epilepsy in low-grade gliomas: the impact on cognitive function and quality of life. Ann Neurol. 2003; 54 514-520
- 74 Klein M, Heimans J J, Aaronson N K et al.. Effect of radiotherapy and other treatment-related factors on mid-term and long-term cognitive sequelae in low-grade gliomas: a comparative study. Lancet. 2002; 360 1361-1368
- 75 Armstrong C L, Hunter J V, Ledakis G E et al.. Late cognitive and radiographic changes related to radiotherapy. Initial prospective findings. Neurology. 2002; 59 40-48
- 76 Torres I J, Mundt A J, Sweeney P J et al.. A longitudinal neuropsychological study of partial brain radiation in adults with brain tumors. Neurology. 2003; 60 1113-1118
- 77 Armstrong C L, Corn B W, Ruffer J E, Pruitt A A, Mollman J E, Phillips P C. Radiotherapeutic effects on brain function: double dissociation of memory systems. Neuropsychiatry Neuropsychol Behav Neurol. 2000; 13 101-111
- 78 Postma T J, Klein M, Verstappen C C et al.. Radiotherapy-induced cerebral abnormalities in patients with low-grade gliomas. Neurology. 2002; 59 121-123
- 79 Meyers C A, Weitzner M A, Valentine A D, Levin V A. Methylphenidate therapy improves cognition, mood, and function of brain tumor patients. J Clin Oncol. 1998; 16 2522-2527
- 80 Crossen J R, Garwood D, Glatstein E, Neuwelt E A. Neurobehavioral sequelae of cranial irradiation in adults: a review of radiation-induced encephalopathy. J Clin Oncol. 1994; 12 627-642
- 81 Brown P D, Buckner J C, O'Fallon J R et al.. Effects on radiotherapy on cognitive function in patients with low-grade glioma measured by the Folstein MMSE. J Clin Oncol. 2003; 21 2519-2524
- 82 Thiessen B, DeAngelis L M. Hydrocephalus in radiation leukoencephalopathy. Arch Neurol. 1998; 55 705-710
- 83 Perrini P, Scollato A, Cioffi F, Mouchaty H, Conti R, Di Lorenzo N. Radiation leukoencephalopathy associated with moderate hydrocephalus: intracranial pressure monitoring and results of ventriculoperitoneal shunting. Neurol Sci. 2002; 23 237-241
- 84 Ron E, Modan B, Boice J D et al.. Tumors of the brain and nervous system after radiotherapy in childhood. N Engl J Med. 1988; 319 1033-1039
- 85 Hawkins M M, Draper G J, Kingston J E. Incidence of second primary tumors among childhood cancer survivors. Br J Cancer. 1987; 56 339-347
- 86 Brada M, Ford D, Ashley S et al.. Risk of second brain tumour after conservative surgery and radiotherapy for pituitary adenomas. BMJ. 1992; 304 1343-1346
- 87 Neglia J P, Meadows A T, Robison L L et al.. Second neoplasms after acute lymphoblastic leukemia in childhood. N Engl J Med. 1991; 325 1330-1336
- 88 Amirjamshidi A, Abbassioun K. Radiation-induced tumors of the central nervous system occurring in childhood and adolescence. Four unusual lesions in three patients and a review of the literature. Childs Nerv Syst. 2000; 16 390-397
- 89 Strojan P, Popovic M, Jereb B. Secondary intracranial meningiomas after high-dose cranial irradiation: report of five cases and review of the literature. Int J Radiat Oncol Biol Phys. 2000; 48 65-73
- 90 Musa B S, Pople I K, Cummins B H. Intracranial meningiomas following irradiation-a growing problem?. Br J Neurosurg. 1995; 9 629-637
- 91 Mack E E. Radiation-induced tumors. In: Berger MS, Wilson CB The Gliomas. Philadelphia; WB Saunders 1999: 724-735
- 92 Murros K E, Toole J F. The effect of radiation on the carotid artery. Arch Neurol. 1989; 46 445-449
- 93 Gupta S. Radiation induced carotid artery blow out: a case report. Acta Chir Belg. 1994; 94 299-300
- 94 McCready R A, Hyde G P, Bivins B A. Radiation induced arterial injuries. Surgery. 1983; 93 306-312
- 95 Bernstein M, Lumley M, Davidson G, Laperriere N, Leung P. Intracranial arterial occlusion associated with high-activity iodine-125 brachytherapy for glioblastoma. J Neurooncol. 1993; 17 253-260
- 96 Werner M H, Burger P C, Heinz E R, Friedman A H, Halperin E C, Schold Jr S C. Intracranial atherosclerosis following radiotherapy. Neurology. 1988; 38 1158-1160
- 97 Grill J, Couanet D, Cappelli C et al.. Radiation-induced cerebral vasculopathy in children with neurofibromatosis and optic pathway glioma. Ann Neurol. 1999; 45 393-396
- 98 Bitzer M, Topka H. Progressive cerebral occlusive disease after radiation therapy. Stroke. 1995; 26 131-136
- 99 Suzuki Y, Negoro M, Shibuya M, Yoshida J, Negoro T, Watanabe K. Surgical treatment for pediatric moyamoya disease: use of the superficial temporal artery for both areas supplied by the anterior and middle cerebral arteries. Neurosurgery. 1997; 40 324-329
- 100 Dauser R C, Tuite G F, McCluggage C W. Dural inversion procedure for moyamoya disease. Technical note. J Neurosurg. 1997; 86 719-723
- 101 Fouladi M, Langston J, Mulhern R et al.. Silent lacunar lesions detected by MRI of children with brain tumors: a late sequela of therapy. J Clin Oncol. 2000; 18 824-831
- 102 Novelli P M, Reigel D H, Langham Gleason P, Yunis E. Multiple cavernous angiomas after high-dose whole-brain radiation therapy. Pediatr Neurosurg. 1997; 26 322-325
- 103 Jensen F K, Wagner A. Intracranial aneurysm following radiation therapy for medulloblastoma. A case report and review of the literature. Acta Radiol. 1997; 38 37-42
- 104 Azzarelli B, Moore J, Gilmor R, Muller J, Edwarrds M, Mealey J. Multiple fusiform intracranial aneurysms following curative radiation therapy for suprasellar germinoma. J Neurosurg. 1984; 61 1141-1145
- 105 Constine L S, Woolf P D, Cann D et al.. Hypothalamic-pituitary dysfunction after radiation for brain tumors. N Engl J Med. 1993; 328 87-94
- 106 Littley M D, Shalet S M, Beardwell C G. Radiation and hypothalamic-pituitary function. Baillieres Clin Endocrinol Metab. 1990; 4 147-175
- 107 Littley M D, Shalet S M, Beardwell C G, Robinson E L, Sutton M L. Radiation-induced hypopituitarism is dose-dependent. Clin Endocrinol (Oxf). 1989; 31 363-375
- 108 Clayton P E, Shalet S M. Dose dependency of time of onset of radiation-induced growth hormone deficiency. J Pediatr. 1991; 118 226-228
- 109 Rappaport R, Brauner R. Growth and endocrine disorders secondary to cranial irradiation. Pediatr Res. 1989; 25 561-567
- 110 Schmiegelow M, Lassen S, Poulsen S et al.. Cranial radiotherapy of childhood brain tumours: growth hormone deficiency and its relation to the biological effective dose of irradiation in a large population based study. Clin Endocrinol (Oxf). 2000; 53 191-197
- 111 Arlt W, Hove U, Müller B et al.. Frequent and frequently overlooked: treatment-induced endocrine dysfunction in adult long-term survivors of primary brain tumors. Neurology. 1997; 49 498-506
- 112 Taphoorn M JB, Heimans J J, Van der Veen E A, Karim A B MF. Endocrine functions in long-term survivors of low-grade supratentorial glioma treated with radiation therapy. J Neurooncol. 1995; 25 97-102
- 113 Samaan N A, Vieto R, Schultz P N, Mao R M, Meoz R T, Sampiere V A. Hypothalamic pituitary and thyroid dysfunction after radiotherapy of the head and neck. Int J Radiat Oncol Biol Phys. 1982; 8 1857-1867
- 114 Petterson T, MacFarlane I A, Foy P M, Hughes H J, Jones B, Shaw D. Hyperprolactinaemia and infertility following cranial irradiation for brain tumours: successful treatment with bromocriptine. Br J Neurosurg. 1993; 7 571-574
- 115 Ahlbom H. Results of radiotherapy of hypopharyngeal cancer at Radium-Hemmet, Stockholm. Acta Radiol. 1941; 22 155-171
- 116 Rampling R, Symonds P. Radiation myelopathy. Curr Opin Neurol. 1998; 11 627-632
- 117 Word J A, Kalokhe U P, Aron B S. Transient radiation myelopathy in patients with Hodgkin's disease treated by mantle irradiation. Int J Radiat Oncol Biol Phys. 1980; 6 1731-1733
- 118 Fein D A, Marcus R B, Parsons J T, Mendenhall W M, Million R R. Lhermitte's sign incidence and treatment variables influencing risk after irradiation of the cervical spinal cord. Int J Radiat Oncol Biol Phys. 1993; 27 1029-1033
- 119 Esik O, Csere T, Stefanits K et al.. A review on radiogenic Lhermitte's sign. Pathol Oncol Res. 2003; 9 115-120
- 120 Lewanski C R, Sinclair J A, Stewart J S. Lhermitte's sign following head and neck radiotherapy. Clin Oncol (R Coll Radiol). 2000; 12 98-103
- 121 Peterson K, Rosenblum M K, Powers J M, Alvord E, Walker R W, Posner J B. Effect of brain irradiation on demyelinating lesions. Neurology. 1993; 43 2105-2112
- 122 Li Y Q, Jay V, Wong C. Oligodendrocytes in the adult rat spinal cord undergo radiation induced apoptosis. Cancer Res. 1996; 56 5417-5422
- 123 Schultheiss T E, Kun L E, Ang K K, Stephens L C. Radiation response of the central nervous system. Int J Radiat Oncol Biol Phys. 1995; 31 1093-1112
- 124 Chao M W, Wirth A, Ryan G, MacManus M, Liew K H. Radiation myelopathy following transplantation and radiotherapy for non-Hodgkin's lymphoma. Int J Radiat Oncol Biol Phys. 1998; 41 1057-1061
- 125 Pallis C A, Louis S, Morgan R L. Radiation myelopathy. Brain. 1961; 84 460-479
- 126 Wang P Y, Shen W C, Jan J S. MR imaging in radiation myelopathy. AJNR Am J Neuroradiol. 1992; 13 1049-1055
- 127 Yasui T, Yagura H, Komiyama M et al.. Significance of gadolinium enhanced MRI in differentiating spinal cord radiation myelopathy from tumor. J Neurosurg. 1992; 77 628-631
- 128 Wang P J, Shen W C, Jan J S. Serial MRI changes in radiation myelopathy. Neuroradiology. 1995; 37 374-377
- 129 Komachi H, Tsuchiya K, Ikeda M, Koike R, Matsunaga T, Ikeda K. Radiation myelopathy: a clinicopathological study with special reference to correlation between MRI findings and neuropathology. J Neurol Sci. 1995; 132 228-232
- 130 Koehler P J, Verbiest H, Jager J, Vecht C J. Delayed radiation myelopathy: serial MR-imaging and pathology. Clin Neurol Neurosurg. 1996; 98 197-201
- 131 Michikawa M, Wada Y, Sano M et al.. Radiation myelopathy: significance of gadolinium-DTPA enhancement in the diagnosis. Neuroradiology. 1991; 33 286-289
- 132 Alfonso E R, De Gregorio M A, Mateo P et al.. Radiation myelopathy in over-irradiated patients: MR imaging findings. Eur Radiol. 1997; 7 400-404
- 133 Angibaud G, Ducasse J L, Baille G, Clanet M. Potential value of hyperbaric oxygen in the treatment of post radiation myelopathies. Rev Neurol. 1995; 151 661-666
- 134 Calabro F, Jinkins J R. MRI of radiation myelitis: a report of a case treated with hyperbaric oxygen. Eur Radiol. 2000; 10 1079-1084
- 135 Allen J C, Miller D C, Budzilovitch G N, Epstein F J. Brain and spinal cord hemorrhage in long-term survivors of malignant pediatric brain tumors: a possible late effect of therapy. Neurology. 1991; 41 148-150
Anthony BéhinM.D.
Fédération de Neurologie Mazarin, Groupe Hospitalier Pitié-Salpêtrière
47-83 Boulevard de l'Hôpital, 75651 Paris Cedex 13, France