Plant Biol (Stuttg) 2005; 7(4): 358-368
DOI: 10.1055/s-2005-837696
Research Paper

Georg Thieme Verlag Stuttgart KG · New York

Ultrastructure and Lipid Alterations Induced by Cadmium in Tomato (Lycopersicon esculentum) Chloroplast Membranes

W. Djebali1 , M. Zarrouk2 , R. Brouquisse3 , S. El Kahoui4 , F. Limam4 , M. H. Ghorbel1 , W. Chaïbi1
  • 1Laboratoire de Physiologie Végétale, U.R. “Nutrition et Métabolisme Azotés et Protéines de Stress”, Département de Biologie, Faculté des Sciences de Tunis, Campus Universitaire, 1060 Tunis, Tunisia
  • 2Laboratoire de Caractérisation et Qualité de l'Huile d'Olive, Institut National de Recherche Scientifique et Technique, BP 95-2050 Hammam-Lif, Tunisia
  • 3UMR de Physiologie Cellulaire Végétale, Département Réponse et Dynamique Cellulaire, CEA-Grenoble, 17 rue des Martyrs, 38054 Grenoble cedex 9, France
  • 4Laboratoire Interactions Légumineuses-Microorganismes, Institut National de Recherche Scientifique et Technique, BP 95-2050 Hammam-Lif, Tunisia
Further Information

Publication History

Received: August 23, 2004

Accepted: February 25, 2005

Publication Date:
18 July 2005 (online)

Abstract

The effects of cadmium (Cd) uptake on ultrastructure and lipid composition of chloroplasts were investigated in 28-day-old tomato plants (Lycopersicon esculentum var. Ibiza F1) grown for 10 days in the presence of various concentrations of CdCl2. Different growth parameters, lipid and fatty acid composition, lipid peroxidation, and lipoxygenase activity were measured in the leaves in order to assess the involvement of this metal in the generation of oxidative stress. We first observed that the accumulation of Cd increased with external metal concentration, and was considerably higher in roots than in leaves. Cadmium induced a significant inhibition of growth in both plant organs, as well as a reduction in the chlorophyll and carotenoid contents in the leaves. Ultrastructural investigations revealed that cadmium induced disorganization in leaf structure, essentially marked by a lowered mesophyll cell size, reduced intercellular spaces, as well as severe alterations in chloroplast fine structure, which exhibits disturbed shape and dilation of thylakoid membranes. High cadmium concentrations also affect the main lipid classes, leading to strong changes in their composition and fatty acid content. Thus, the exposure of tomato plants to cadmium caused a concentration-related decrease in the fatty acid content and a shift in the composition of fatty acids, resulting in a lower degree of fatty acid unsaturation in chloroplast membranes. The level of lipid peroxides and the activity of lipoxygenase were also significantly enhanced at high Cd concentrations. These biochemical and ultrastructural changes suggest that cadmium, through its effects on membrane structure and composition, induces premature senescence of leaves.

References

  • 1 Allen C., Good P.. Acyl lipids in photosynthetic systems. Colowic, S. P. and Kaplan, N. O., eds. Methods in Enzymology, Vol. 23. New York; Academic Press (1971): 387-389
  • 2 Arnon D. I.. Copper enzymes in isolated chloroplasts. Polyphenoloxidase in Beta vulgaris. .  Plant Physiology. (1949);  24 1-15
  • 3 Barcelo J., Poschenrieder C. H., Andreu L., Gunse B.. Cadmium-induced decrease of water stress resistance in bush bean plants (Phaseolus vulgaris L. cv. Contender). I. Effects of Cd on water potential, relative water content and cell wall elasticity.  Journal of Plant Physiology. (1986);  125 17-25
  • 4 Baszynski T., Wajda L., Krol M., Wolinska D., Krupa Z., Tukendorf A.. Photosynthetic activities of cadmium-treated tomato plants.  Physiolgia Plantarum. (1980);  48 365-370
  • 5 Bazzaz F. A., Rolfe G. L., Carlson R. W.. Effect of cadmium on photosynthesis and transpiration of excised leaves of corn and sunflower.  Physiolgia Plantarum. (1992);  32 373-377
  • 6 Bligh E. G., Dyer W. J.. A rapid method of total lipid extraction and purification.  Canadian Journal of Biochemistry. (1959);  37 911-917
  • 7 Bradford M. M.. A rapid and sensitive method for the quantification of microgram quantities of protein utilizing the principle of protein-dye binding.  Analytical Biochemistry. (1976);  72 248-258
  • 8 Buchanan-Wollaston V.. The molecular biology of leaf senescence.  Journal of Experimental Botany. (1997);  48 181-199
  • 9 Buege J. A., Aust S. D.. Microsomal lipid peroxidation.  Methods in Enzymology. (1972);  52 302-310
  • 10 Chaoui A., Mazhoudi S., Ghorbel M. H., El Ferjani E.. Cadmium and zinc induction of lipid peroxidation and effects on antioxidant enzymes activities in bean (Phaseolus vulgaris L.).  Plant Science. (1997);  127 139-147
  • 11 DeFilippis L. F., Ziegler H.. Effect of sublethal concentrations of zinc, cadmium and mercury on the photosynthetic carbon reduction cycle of euglena.  Journal of Plant Physiology. (1993);  142 167-172
  • 12 Del Rio L. A., Pastori G. M., Palma J. M., Sandalio L. M., Sevilla F., Corpas F. J., Jiménez A., Lòpez-Huertas E., Hernàndez J. A.. The activated oxygen role of peroxisomes in senescence.  Plant Physiology. (1998);  116 1195-1200
  • 13 Di Cagno R., Guidi L., De Gara L., Soldatini G. F.. Combined cadmium and ozone treatments affect photosynthesis and ascorbate-dependent defenses in sunflower.  New Phytologist. (2001);  151 627-636
  • 14 Djebali W., Chaïbi W., Ghorbel M. H.. Croissance, activité peroxydasique et modifications structurales et ultrastructurales induites par le cadmium dans la racine de tomate (Lycopersicon esculentum). .  Canadian Journal of Botany. (2002);  80 942-953
  • 15 Fong F., Heath R. L.. Age dependent changes in phospholipids and galactolipids in primary bean leaves (Phaseolus vulgaris). .  Phytochemistry. (1977);  16 215-217
  • 16 Fuhrer J., Geballe J. T., Fries C.. Cadmium-induced change in water economy on beans: Involvement of ethylene formation.  Plant Physiology Supplement (Lancaster). (1981);  67 55
  • 17 Goldbeck J. H., Martin I. F., Fowler C. F.. Mechanism of linolenic acid-induced inhibition of photosynthetic electron transport.  Plant Physiology. (1980);  65 707-713
  • 18 Gora L., Clijsters H.. Effects of copper and zinc on the ethylene metabolism in Phaseolus vulgaris L. Clijsters, H., De Proft, M., Marcelle, R., and van Pouke, M., eds. Biochemical and Physiological Aspects of Ethylene Production in Lower and Higher Plants. Dordrecht; Kluwer (1989): 219-228
  • 19 Grechkin A.. Recent developments in biochemistry of plant lipoxygenase pathway.  Progress in Lipid Research. (1998);  37 317-352
  • 20 Halliwell B., Gutteridge J.. Free Radicals in Biology and Medicine. Oxford, UK; Clarendon Press (1989)
  • 21 Harwood J. L., Jones A. V., Thomas H.. Leaf senescence in non yellowing mutant of Festuca pratensis. .  Planta. (1982);  156 152-157
  • 22 Hodges D. M., DeLong J. M., Forney C. F., Prang R. K.. Improving the thiobarbituric acid-reactive-substances assay for estimating lipid peroxidation in plant tissues containing anthocyanin and other interfering compounds.  Planta. (1999);  207 604-611
  • 23 Inada N., Sakai A., Kuroiwa H., Kuroiwa T.. Three-dimentional analysis of the senescence program in rice (Oryza sativa L.) coleoptiles. Investigations by fluorescence and electron microscopy.  Planta. (1998);  206 585-597
  • 24 Kockritz A., Schewe T., Hieke B., Hass W.. The effects of soybean lipoxygenase-1 on chloroplasts from wheat (Triticum aestivum). .  Phytochemistry. (1985);  24 381-384
  • 25 Krupa Z., Baszynski T.. Acyl lipid composition of thylakoid membranes of cadmium-treated tomato plants.  Acta Physiologiae Plantarum. (1989);  11 111-116
  • 26 Krupa Z., Baszynski T.. Some aspects of heavy metals toxicity towards photosynthetic apparatus - direct and indirect effects on light and dark reactions.  Acta Physiologiae Plantarum. (1995);  7 55-64
  • 27 Lepage M.. Identification and composition of turnip root lipids.  Plant Physiology. (1967);  47 329-334
  • 28 Leshem Y. Y.. Plant Membranes: A Biophysical Approach to Structure, Development and Senescence. Dordrecht; Kluwer Academic Publishers (1992): 45-48
  • 29 Leshem Y. Y., Liftmann Y., Grossmann S., Frimer A. A.. Free radicals and pea foliage senescence: increase of lipoxygenase and ESR signals and cytokinin-induced changes. Powers, E. L. and Rodgers, M. A. J., eds. Oxygen and Oxy-radicals in Chemistry and Biology. New York; Academic Press (1981): 676-678
  • 30 Lozano-Rodriguez E., Hernandez L. E., Bonay P., Carpena-Ruiz R. O.. Distribution of Cd in shoot and root tissues of maize and pea plants: Physiological disturbances.  Journal of Experimental Botany. (1997);  48 123-128
  • 31 Maccarone M., van Zadelhoff G., Veldink G. A., Vliegenthart J. F. G., Finazzi-Agro A.. Early activation of lipoxygenase in lentil (Lens culinaris) root protoplasts by oxidative stress induces programmed cell death.  European Journal of Biochemistry. (2000);  267 5078-5084
  • 32 Maksymiec W., Russa R., Urbanik-Sypniewska T., Baszynski T.. Effect of excess Cu on the photosynthetic apparatus of runner bean leaves treated at two different growth stages.  Physiologia Plantarum. (1994);  91 715-721
  • 33 Metcalfe L. D., Schmitz A., Pelka J. P.. Rapid preparation of fatty acids from lipids for gas chromatographic analysis.  Analytical Chemistry. (1966);  38 514
  • 34 Milone T. M., Sgherri C., Clijsters H., Navari-Izzo F.. Antioxidative responses of wheat treated with realistic concentration of cadmium.  Environmental and Experimental Botany. (2003);  50 265-276
  • 35 Murata N., Higashi S. I., Fujimura Y.. Glycerolipids in various preparations of photosystem II from spinach chloroplasts.  Biochimica et Biophysica Acta. (1990);  1019 261-268
  • 36 Ouariti O., Boussama N., Zarrouk M., Cherif A., Ghorbel M. H.. Cadmium and copper-induced changes in tomato membrane lipids.  Phytochemistry. (1997);  45 1343-1350
  • 37 Quartacci M. F., Cosi E., Navari-Izzo F.. Lipids and NADPH-dependent superoxide production in plasma membrane vesicles from roots of wheat grown under copper deficiency or excess.  Journal of Experimental Botany. (2001);  52 77-84
  • 38 Rauser W. E., Samarakoon A. B.. Vein loading in seedlings of Phaseolus vulgaris exposed to excess cobalt, nikel and zinc.  Plant Physiology. (1980);  65 578-583
  • 39 Reynolds R. S.. The use of lead citrate at high pH as an electron-opaque stain in electron microscopy.  Journal of Cell Biology. (1963);  17 208-213
  • 40 Shah K., Kumar R. G., Verma S., Dubey R. S.. Effect of cadmium on lipid peroxidation, superoxide anion generation and activities of antioxidant enzymes in growing rice seedlings.  Plant Science. (2001);  161 1135-1144
  • 41 Skorzynska E., Urbanik-Sypniewska T., Russa R., Baszynski T.. Galactolipase activity of chloroplasts in cadmium-treated runner bean plants.  Journal of Plant Physiology. (1991);  138 454-459
  • 42 Somashekaraiah B. V., Padmaja K., Prasad A. R. K.. Phytotoxicity of cadmium ions on germinating seedlings of mung bean (Phaseolus vulgaris): Involvement of lipid peroxides in chlorophyll degradation.  Physiologia Plantarum (Copenhagen). (1992);  85 85-89
  • 43 Spurr A. R.. A low viscosity epoxy resin embedding medium for electron microscopy.  Journal of Ultrastructure Research. (1969);  26 31-43
  • 44 Staehelin L.. Chloroplast structure and supramolecular organization of photosynthetic membranes. Staehelin, L. and Arntzen, C., eds. Encyclopedia of Plant Physiology, Vol. 19. Berlin; Springer Verlag (1986): 1-84
  • 45 Stobart A. R., Griffiphs W. T., Ameen-Bukhari J., Shewood R. P.. The effect of Cd2+ on the biosynthesis of chlorophyll in leaves of barley.  Physiologia Plantarum. (1985);  63 293-298
  • 46 Surrey K.. Spectrophotometric method for determination of lipoxygenase activity.  Plant Physiology. (1964);  39 65-69
  • 47 Tappel A. L.. Lipid peroxidation damage to cell components.  Federation Proceedings. (1973);  32 1870-1874
  • 48 Thompson J. E., Froese C. D., Madey E., Smith M. D., Hong Y.. Lipid metabolism during plant senescence.  Progress in Lipid Research. (1998);  37 119-141
  • 49 Thompson J. E., Legge R. L., Barber R. L.. The role of free radicals in senescence and wounding.  New Phytologist. (1987);  105 317-344
  • 50 Vassilev A., Yordanov I.. Reductive analysis of factors limiting growth of cadmium-treated plants: A review.  Bulgarian Journal of Plant Physiology. (1997);  23 114-133
  • 51 Webb M. S., Williams J. P.. Changes in lipid and fatty acid metabolism of Vicia faba mesophyll protoplasts.  Plant and Cell Physiology. (1984);  25 1551-1559
  • 52 Wilson K. A., McManus M. T., Gordon M. E., Jordan T. W.. The proteomics of senescence in leaves of white clover, Trifolium repens (L.).  Proteomics. (2002);  2 1114-1122
  • 53 Wu F., Zhang G., Dominy P.. Four barley genotypes respond differently to cadmium: Lipid peroxidation and activities and antioxidant capacity.  Environmental and Experimental Botany. (2003);  50 67-78

W. Djebali

Laboratoire de Physiologie Végétale
U.R. “Nutrition et Métabolisme Azotés et Protéines de Stress”
Département de Biologie
Faculté des Sciences de Tunis
Campus Universitaire

1060 Tunis

Tunisia

Email: wahbi.djebali@fst.rnu.tn

Editor: M. C. Ball