RSS-Feed abonnieren
DOI: 10.1055/s-2005-837710
Georg Thieme Verlag Stuttgart KG · New York
Monitoring Cytosolic pH of Carboxysome-Deficient Cells of Synechocystis sp. PCC 6803 Using Fluorescence Analysis
Publikationsverlauf
Received: November 30, 2004
Accepted: March 10, 2005
Publikationsdatum:
25. Mai 2005 (online)

Abstract
Disruption of the ccmM gene in the cyanobacterium Synechocystis sp. PCC 6803 causes a deficiency of carboxysomes and impairs growth in ambient CO2. The effect of this gene defect on cellular metabolism was investigated using electron microscopy, biochemical and fluorescence analysis. Mutant cells were devoid of the characteristic dense polyhedral bodies called carboxysomes. The photosynthetic oxygen evolution was considerably lower in mutant cells compared to wild type, while Rubisco activity in cell extracts was similar. During photosynthetic CO2-dependent oxygen evolution, Rubisco V max dropped from 142 micromol mg-1 chlorophyll h-1 (WT) to 77 micromol mg-1 chlorophyll h-1 in the mutant cells, and the K m for Ci (inorganic carbon) increased from 0.5 mM (WT) to 40 mM. The fluorescent indicator, acridine yellow, was used for non-invasive measurements of cytoplasmic pH changes in whole cells induced by addition of Ci, making use of the decrease in fluorescence yield that accompanies cytoplasmic acidification. The experimental results indicate that control of the cytoplasmic pH is linked to the internal carbon pool (Ci). Both wild-type and ccmM-deficient cells showed a linear response of acridine yellow fluorescence quenching and, thus, of internal acidification, with respect to externally added inorganic carbon. However, the fluorescence analysis of mutant (carboxysome-free) cells indicated slower kinetics of Ci accumulation.
Key words
Acridine dyes - carbon concentrating mechanism (ccm) - carboxysome - cyanobacteria - fluorescence analysis - Rubisco
References
- 1 Abe T., Tsuzuki M., Kodakami Y., Miyachi S.. Isolation and characterization of temperature-sensitive, high-CO2 requiring mutant of Anacystis nidulans R2. Plant and Cell Physiology. (1988); 29 1353-1360
- 3 Badger M., Andrews T. J., Whitney S. M., Ludwig M., Yellowlees D. C., Leggat W., Price G. D.. The diversity and coevolution of Rubisco, plastids, pyrenoids, and chloroplast-based CO2-concentrating mechanisms in algae. Canadian Journal of Botany. (1998); 76 1052-1071
- 4 Belkin S., Mehlhorn R. J., Packer L.. Proton gradients in intact cyanobacteria. Plant Physiology. (1987); 84 25-30
- 5 Falkner G., Horner F., Werdan K., Heldt H. W.. pH changes in the cytoplasm of the blue-green alga Anacystis nidulans caused by light-dependent proton flux into the thylakoid space. Plant Physiology. (1976); 58 717-718
- 6 Gibson J.. Movement of acetate across the cytoplasmic membrane of the unicellular cyanobacteria Synechococcus and Aphanocapsa. . Archives of Microbiology. (1981); 130 175-179
- 7 Kallas T., Dahlquist F. W.. Phosphorus-31 nuclear magnetic resonance analysis of internal pH during photosynthesis in the cyanobacterium Synechococcus. . Biochemistry. (1981); 20 5900-5907
- 8 Kaneko T., Sato S., Kotani H., Tanaka A., Asamizu E., Nakamura Y., Miyajima N., Hirosawa M., Sugiura M., Sasamoto S., Kimura T., Hosouchi T., Matsuno A., Muraki A., Nakazaki N., Naruo K., Okumura S., Shimpo S., Takeuchi C., Wada T., Watanabe A., Yamada M., Yasuda M., Tabata S.. Sequence analysis of the genome of the unicellular cyanobacterium Synechocystis sp. strain PCC6803. II. Sequence determination of the entire genome and assignment of potential protein-coding regions. DNA Research. (1996); 3 109-136
- 10 Kaplan A., Reinhold L.. CO2 concentrating mechanisms in the photosynthetic microorganisms. Annual Review of Plant Physiology and Plant Molecular Biology. (1999); 50 537-570
- 11 Ludwig M., Sültemeyer D., Price G. D.. Isolation of ccmKLMN genes from the marine cyanobacterium, Synechococcus PCC7002 (Cyanophceae), and evidence that CcmM is essential for carboxysome assembly. Journal of Phycology. (2000); 36 1109-1118
- 12 Marcus Y., Berry J. A., Pierce J.. Photosynthesis and photorespiration in a mutant of the cyanobacterium Synechocystis PCC6803 lacking carboxysomes. Planta. (1992); 187 511-516
- 14 Miller A. G., Espie G. S., Canvin D. T.. The effect of inorganic carbon and oxygen on fluorescence in the cyanobacterium Synechococcus UTEX 625. Canadian Journal of Botany. (1991); 69 1151-1160
- 16 Ogawa T., Kaneda T., Omata T.. A mutant of Synechococcus PCC7942 incapable of adapting to low CO2 concentration. Plant Physiology. (1987); 84 711-715
- 17 Ogawa T.. Mutants of Synechocystis PCC6803 defective in inorganic carbon transport. Plant Physiology. (1990); 94 760-765
- 18 Ogawa T., Amichay D., Gurevitz M.. Isolation and characterization of the ccmM gene required by the cyanobacterium Synechocystis PCC6803 for inorganic carbon utilisation. Photosynthesis Research. (1994); 39 183-190
- 20 Padan E., Schuldiner S.. Energy transduction in the photosynthetic membranes of the cyanobacterium (blue-green alga) Plectonema boryanum. . Journal of Biological Chemistry. (1978); 253 3281-3286
- 21 Pänke O., Rumberg B.. Energy and entropy balance of ATP synthesis. Biochimica et Biophysica Acta. (1997); 1322 183-194
- 22 Pierce J., Carlson T. J., Williams J. G. K.. A cyanobacterial mutant requiring the expression of ribulose bisphosphat carboxylase from a photosynthetic anaerobe. Proceedings of the National Academy of Sciences of the USA. (1988); 86 5753-5757
- 25 Price G. D., Badger M. R.. Expression of human carbonic anhydrase in the cyanobacterium Synechococcus PCC7942 creates a high CO2-requiring phenotype. Plant Physiology. (1989); 91 505-513
- 26 Price G. D., Sültemeyer D., Klughammer B., Ludwig M., Badger M. R.. The functioning of the CO2 concentrating mechanism in several cyanobacterial strains: a review of general physiological characteristics, genes, proteins, and recent advances. Canadian Journal of Botany. (1998); 76 973-1002
- 27 Reynolds E. S.. The use of lead citrate at high pH as an electronopaque stain in electron microscopy. Journal of Cell Biology. (1963); 17 208-212
- 28 Schwarz R., Friedberg D., Kaplan A.. Is there a role for the 42 kD polypeptide in inorganic carbon uptake by cyanobacteria?. Plant Physiology. (1988); 88 284-288
- 29 So A. K. C., John-McKay M., Espie G. S.. Characterization of a mutant lacking carboxysomal carbonic anhydrase from the cyanobacterium Synechocystis PCC 6803. Planta. (2002); 214 456-467
- 30 Stanier R. Y., Kunisawa. R., Mandel M., Cohen-Bazire G.. Purification and properties of unicellular blue-green algae (order Chroococales). Bacterial Reviews. (1971); 35 171-205
- 31 Teuber M., Rögner M., Berry S.. Fluorescent probes for non-invasive bioenergetic studies of whole cyanobacterial cells. Biochimica et Biophysica Acta. (2001); 1506 31-46
G. F. Wildner
Lehrstuhl für Biochemie der Pflanzen
Ruhr-Universität Bochum
44780 Bochum
Germany
eMail: guenter.wildner@ruhr-uni-bochum.de
Editor: W. Martin