References
<A NAME="RU31804ST-1A">1a</A>
Nelson A.
O’Brien P.
Warren S.
Tetrahedron Lett.
1995,
36:
2685
<A NAME="RU31804ST-1B">1b</A>
Nelson A.
Warren S.
J. Chem. Soc., Perkin Trans. 1
1997,
2645
<A NAME="RU31804ST-2A">2a</A>
Lythgoe B.
Moran TA.
Nambudiry MEN.
Ruston S.
J. Chem. Soc., Perkin Trans. 1
1976,
2386
<A NAME="RU31804ST-2B">2b</A>
Ikeda Y.
Ukai J.
Ikeda N.
Yamamoto H.
Tetrahedron
1987,
43:
723
<A NAME="RU31804ST-2C">2c</A>
Ukai J.
Ikeda Y.
Yamamoto H.
Tetrahedron Lett.
1983,
24:
4029
<A NAME="RU31804ST-2D">2d</A>
Clough JM.
Pattenden G.
Tetrahedron
1981,
37:
3911
<A NAME="RU31804ST-2E">2e</A>
Lir RQ.
Schlosser M.
Synlett
1996,
1195 ; see also page 1197
<A NAME="RU31804ST-3A">3a</A>
Hays HR.
Peterson DJ.
Organic Phosphorus Compounds
Vol. 3:
Wiley;
New York:
1972.
p.341
<A NAME="RU31804ST-3B">3b</A>
Davidson AH.
Fleming I.
Pearee A.
Snowden RL.
J. Chem. Soc., Perkin Trans. 1
1977,
550
<A NAME="RU31804ST-3C">3c</A>
Savage MP.
Tripett A.
J. Chem. Soc. C
1966,
1842
<A NAME="RU31804ST-3D">3d</A>
Armstrong SK.
Collington EW.
Knight JG.
Naylor A.
Warren S.
J. Chem. Soc., Perkin Trans. 1
1993,
1433
<A NAME="RU31804ST-3E">3e</A>
Salvacion TC.
Philip LF.
Tetrahedron
2003,
59:
7177
<A NAME="RU31804ST-3F">3f</A>
Bisaro F.
Gouverneur V.
Tetrahedron Lett.
2003,
44:
7133
<A NAME="RU31804ST-4A">4a</A>
Ma S.
Li L.
Wei Q.
Xie H.
Wang G.
Shi Z.
Zhang J.
Synthesis
2001,
713
<A NAME="RU31804ST-4B">4b</A>
Ma S.
Li L.
Synlett
2001,
1206
<A NAME="RU31804ST-5">5</A>
Milton MD.
Onodera G.
Nishibayashi Y.
Uemura S.
Org. Lett.
2004,
6:
3993
<A NAME="RU31804ST-6">6</A>
Rubin M.
Markov J.
Chuprakov S.
Wink DJ.
Gevorgyan V.
J. Org. Chem.
2003,
68:
6251
For reviews on the synthetic utility of vinylic selenides/tellurides, see:
<A NAME="RU31804ST-7A">7a</A>
Commasseto JV.
Ling LW.
Petragnani N.
Stefani HA.
Synthesis
1997,
373
<A NAME="RU31804ST-7B">7b</A>
Comasseto JV.
J. Organomet. Chem.
1983,
253:
131
<A NAME="RU31804ST-7C">7c</A>
Barrientos-Astigarraga RE.
Castenali P.
Comasseto JV.
Formigo HB.
Silva NC.
Sumida CY.
Vieira ML.
J. Organomet. Chem.
2001,
623:
43
<A NAME="RU31804ST-7D">7d</A>
Zeni G.
Braga AL.
Stefani HA.
Acc. Chem. Res.
2003,
36:
731
<A NAME="RU31804ST-8A">8a</A>
Huang X.
Liang CG.
Xu Q.
He QW.
J. Org. Chem.
2001,
66:
74
<A NAME="RU31804ST-8B">8b</A>
Xu Q.
Huang X.
Ni J.
Tetrahedron Lett.
2004,
45:
2981
<A NAME="RU31804ST-9A">9a</A>
Braga AL.
Alves EF.
Silvera CC.
de Andrade LH.
Tetrahedron Lett.
2000,
41:
161
<A NAME="RU31804ST-9B">9b</A>
Braga AL.
Vargas F.
Zeni G.
Silvera CC.
de Andrade LH.
Tetrahedron Lett.
2002,
43:
4399
<A NAME="RU31804ST-9C">9c</A>
Mo XS.
Huang YZ.
Tetrahedron Lett.
1995,
36:
3539
<A NAME="RU31804ST-10">10</A>
Schuster HF.
Coppola GM.
Allene in Organic Synthesis
John Wiley and Sons;
New York:
1988.
<A NAME="RU31804ST-11">11</A>
Patai S.
The Chemistry of Ketenes, Allenes, and Related Compounds
Part 1:
John Wiley and Sons;
New York:
1980.
<A NAME="RU31804ST-12">12</A>
Preparation of β-Organochalcogenyl Allyl Phosphine Oxides 3. General Procedure.
Allenyl diphenyl phosphine oxides (0.5 mmol) in 2 mL THF was added dropwise to a solution
of RYNa, prepared in situ by reduction of (RY)2 (0.25 mmol) with NaBH4 (0.6 mmol) in 2 mL EtOH at r.t. under nitrogen. After the reaction was complete (5
min), the reaction was diluted with sat. brine (10 mL) and extracted with EtOAc (3
¥ 15 mL). The organic layer was dried over anhyd MgSO4. After filtration and removal of the solvent in vacuo, the residue was purified via
chromatography on silica gel with n-hexane-EtOAc (1:1) as the eluent to give the product 3.
Selected spectral data for 3o: mp 106-108 °C. 1H NMR (400 MHz, CDCl3): d = 7.75-7.71 (m, 4 H), 7.74-7.25 (m, 6 H), 3.57 (d, 2 H, J = 13.8 Hz), 2.41 (t, 2 H, J = 7.4 Hz), 1.91 (d, 3 H, J = 5.3 Hz), 1.63 (d, 3 H, J = 3.5 Hz), 1.41-1.36 (m, 2 H), 1.25-1.18 (m, 2 H), 0.77 (t, 3 H, J = 7.4 Hz). 13C NMR (100 MHz, CDCl3): d = 143.48 (d, J = 9.8 Hz), 133.09 (d, J = 96.9 Hz), 131.71 (d, J = 2.7 Hz), 128.38 (d, J = 11.3 Hz), 112.67 (d, J = 11.6 Hz), 39.64 (d, J = 67.4 Hz), 32.21, 26.90, 26.11 (d, J = 2.9 Hz), 22.97, 21.63 (d, J = 2.7 Hz), 13.66. IR (KBr): 3054, 1595, 1493, 1452, 1436, 1187, 1120, 744, 718, 695
cm-1. MS (EI): m/z (%) = 406, 349, 269, 201, 183, 155, 125, 107, 95, 83, 77, 67, 51, 41. Anal. Calcd
for C21H27OPSe: C, 62.22; H, 6.71. Found: C, 61.95, H, 6.59.
<A NAME="RU31804ST-13">13</A>
Brandsma L.
Verkruijsse HD.
Synthesis of Acetylenes, Allenes and Cumulenes
Elsevier Scientific Publishing Company;
New York:
1981.
<A NAME="RU31804ST-14">14</A>
Preparation of β-Alkynyl Allyl Phosphine Oxides 4. General Procedure.
The mixture of 3d (1 mmol), terminal acetylene (2.0 mmol), PdCl2 (10 mol%), CuI (10 mol%) and Et3N (1.0 mmol) in 2 mL MeOH was stirred at r.t. for about 24 h under N2. After the reaction completed, the reaction was diluted with sat. brine (10 mL) and
extracted with EtOAc (3 ¥ 15 mL). The organic layer was dried over anhyd MgSO4. After filtration and removal of the solvent in vacuo, the residue was purified via
chromatography on silica gel with n-hexane-EtOAc (1:1) as the eluent to give the products 4.
Selected data of compound 4b: oil. 1H NMR (400 MHz, CDCl3): d = 7.83-7.78 (m, 4 H), 7.49-7.29 (m, 6 H), 3.28 (d, J = 14.4 Hz, 2 H), 2.00 (t, J = 6.3 Hz, 2 H), 1.87 (d, J = 5.08 Hz, 3 H), 1.65 (d, J = 3.5 Hz, 3 H), 1.29 (m, 4 H), 0.85 (q, J = 6.3 Hz, 3 H). 13C NMR (100 MHz, CDCl3): d = 143.87 (d, J = 9.3 Hz), 133.07 (d, J = 97 Hz), 131.53 (d, J = 2.7 Hz), 131.37 (d, J = 9.1 Hz), 128.16 (d, J = 11.7 Hz), 107.77 (d, J = 9.4 Hz), 93.77 (d, J = 1.6 Hz), 81.06, 35.33 (d, J = 68.3 Hz), 30.81, 23.73 (d, J = 2.7 Hz), 21.93, 20.58 (d, J = 2.7 Hz), 18.98, 13.59. IR (KBr): 2254, 1605, 1402, 1195 cm-1. MS (EI): m/z (%) = 351, 308, 202, 155, 83, 77, 47, 41. Anal. Calcd for C23H27OP: C, 78.83; H, 7.77. Found: C, 78.76, H, 7.82.