References
1a
Knölker H.-J.
Reddy KR.
Chem. Rev.
2002,
102:
4303
1b
Chakraborty DP.
In The Alkaloids
Vol. 44:
Brossi A.
Academic Press;
New York:
1993.
p.257
2
Zhang Y.
Wada T.
Sasabe H.
J. Mater. Chem.
1998,
8:
809
3
Sonntag M.
Strohriegl P.
Chem. Mater.
2004,
16:
4736
4a
Van Dijken A.
Bastiaansen JJAM.
Kiggen NMM.
Langeveld BMW.
Rothe C.
Monkman A.
Bach I.
Stössel P.
Brunner K.
J. Am. Chem. Soc.
2004,
126:
7718
4b
Thomas KRJ.
Lin JT.
Tao Y.-T.
Ko C.-W.
J. Am. Chem. Soc.
2001,
123:
9404
5
Biswas M.
Mishra GC.
Makromol. Chem.
1981,
182:
261
6
Sunderg RJ. In
Comprehensive Heterocyclic Chemistry II
Vol. 2:
Katritzky AR.
Rees CW.
Scriven EFV.
Elsevier;
Oxford:
1996.
p.119
7a
Kuwahara A.
Nakano K.
Nozaki K.
J. Org. Chem.
2005,
70:
413
7b
Lee C.-Y.
Lin C.-F.
Lee J.-L.
Chiu C.-C.
Lu W.-D.
Wu M.-J.
J. Org. Chem.
2004,
69:
2106
7c
Liu Z.
Larock RC.
Org. Lett.
2004,
6:
3739
7d
Knölker H.-J.
Krahl MP.
Synlett
2004,
528
7e
Haider N.
Käferböck J.
Tetrahedron
2004,
60:
6495
7f
Crich D.
Rumthao S.
Tetrahedron
2004,
60:
1513
7g
Cai X.
Snieckus V.
Org. Lett.
2004,
6:
2293
7h
Smitrovich JH.
Davies IW.
Org. Lett.
2004,
6:
533
7i
Duval E.
Cuny GD.
Tetrahedron Lett.
2004,
45:
5411
7j
Knölker H.-J.
Curr. Org. Synth.
2004,
1:
309
7k
Huang Q.
Larock RC.
J. Org. Chem.
2003,
68:
7342
7l
Back TG.
Pandyra A.
Wulff JE.
J. Org. Chem.
2003,
68:
3299
7m
Rawat M.
Wulff WD.
Org. Lett.
2003,
6:
329
7n
Knölker H.-J.
Chem. Commun.
2003,
1170
7o
Scott TL.
Söderberg BCG.
Tetrahedron
2003,
59:
6323
7p
Witulski B.
Alayrac C.
Angew. Chem. Int. Ed.
2002,
41:
3281
7q
Bedford RB.
Cazin CSJ.
Chem. Commun.
2002,
2310
7r
Venkatesh C.
Ila H.
Junjappa H.
Mathur S.
Huch V.
J. Org. Chem.
2002,
67:
9477
8
Serra S.
Fuganti C.
Moro A.
J. Org. Chem.
2001,
66:
7883 ; and references cited therein
9
Serra S.
Fuganti C.
Synlett
2002,
1661
10
Serra S.
Fuganti C.
Synlett
2003,
2005
11
Yasuhara A.
Sakamoto T.
Tetrahedron Lett.
1998,
39:
595
12a 2-Iodoaniline 8a is commercially available. The substituted 2-iodoanilines 8b, 8c and 8e were prepared from the commercially available 4-methylaniline, 2-nitro-4-methoxyaniline and 4-fluoroaniline, respectively, according to the procedure described by Ma et al.
[12b]
Ethyl 4-amino-3-iodobenzoate 8d and 4-nitro-2-iodoaniline 8f were prepared from commercially available ethyl 4-aminobenzoate and 4-nitroaniline, respectively by iodination according to the procedure described by Spivey et al. and Adimurthy et al., respectively.
[12c]
[d]
12b
Ma C.
Liu X.
Li X.
Flippen-Anderson J.
Yu S.
Cook JM.
J. Org. Chem.
2001,
66:
4525
12c
Spivey AC.
McKendrick J.
Srikaran R.
J. Org. Chem.
2003,
68:
1843
12d
Adimurthy S.
Ramachandraiah G.
Ghosh PK.
Bedekar AV.
Tetrahedron Lett.
2003,
44:
5099
13a
Sonogashira K.
Tohda Y.
Hagihara N.
Tetrahedron Lett.
1975,
4467
13b The coupling reaction was performed in THF solution using 2 equiv of propargyl alcohol, Et3N as base and an equimolar amount of copper and palladium catalysts (0.01 equiv). Iododerivatives 9d and 9f show low solubility in THF and a mixture of THF-DMF was used as solvent.
14 The Wittig reaction between aldehydes 11a-f and ylide 12 was performed in toluene-CHCl3 solution. The amount of CHCl3 was adjusted depending on the solubility of the starting aldehydes. The above-mentioned reaction proceeds slowly at r.t. (typically 2 d). Notably, worse results have been obtained by heating the reaction mixture.
15 For the preparation of this ylide see: Hudson RF.
Chopard PA.
Helv. Chim. Acta
1963,
46:
2178
16a Only E-isomers of acids 13 were obtained (NMR analysis). The Wittig reaction of ylide 12 with the aldehydes affords the 3-(E)-alkylidene-succinic acid monoalkyl esters in a highly stereoselective way; for previous studies on this reaction see: Paquette LA.
Schulze MM.
Bolin D.
J. Org. Chem.
1994,
59:
2043
16b
Röder E.
Krauss H.
Liebigs Ann. Chem.
1992,
177
17 Acids 13a-f (50 mmol) were dissolved in acetic anhydride (48 mL, 0.5 mol). To this solution, anhyd NaOAc (8.2 g, 0.1 mol) and hydroquinone (275 mg, 2.5 mmol) were added in one portion. The obtained heterogeneous mixture was heated at reflux for 1 h under a nitrogen atmosphere. After cooling to r.t., the acetic anhydride was removed in vacuo and the residue was treated with EtOAc (300 mL) and H2O (100 mL). The organic phase was separated, dried (Na2SO4) and concentrated under reduced pressure. The residue was purified by chromatography and crystallization to give carbazoles derivatives 14a-f.
All new compounds were fully characterized. Selected analytical data:
Compound 13e: Anal. Calcd for C22H20FNO6S: C, 59.32; H, 4.53. Found: C, 59.45; H, 4.55. Mp 154 °C. FT-IR (nujol): 670, 954, 1030, 1100, 1189, 1280, 1363, 1448, 1466, 1539, 1594, 1633, 1697 cm-1. 1H NMR (250 MHz, CDCl3): δ = 1.40 (3 H, t, J = 7.2 Hz), 2.31 (3 H, s), 3.54 (2 H, s), 4.36 (2 H, q, J = 7.2 Hz), 6.75 (1 H, s), 7.06-7.20 (2 H, m), 7.16 (2 H, d, J = 8.3 Hz), 7.58 (2 H, d, J = 8.3 Hz), 8.18 (1 H, q, J = 4.4 Hz), 8.27 (1 H, s), 11.25 (1 H, br s). MS (EI): m/z = 446 [M+ + 1], 445 [M+], 290, 262, 246, 216, 200, 172, 155, 91, 65.
Compound 14e: Anal. Calcd for C24H20FNO6S: C, 61.40; H, 4.29. Found: C, 61.50; H, 4.30. Mp 197-198 °C (hexane-CHCl3). FT-IR (nujol): 666, 861, 1027, 1087, 1175, 1207, 1299, 1369, 1417, 1472, 1591, 1722, 1763 cm-1. 1H NMR (250 MHz, CDCl3): δ = 1.46 (3 H, t, J = 7.2 Hz), 2.27 (3 H, s), 2.49 (3 H, s), 4.47 (2 H, q, J = 7.2 Hz), 7.13 (2 H, d, J = 8.3 Hz), 7.27 (1 H, dt, J = 9.0, 2.5 Hz), 7.54 (1 H, dd, J = 8.2, 2.5 Hz), 7.69 (2 H, d, J = 8.3 Hz), 7.85 (1 H, s), 8.31 (1 H, dd, J = 9.0, 4.3 Hz), 8.86 (1 H, s). MS (EI): m/z = 470 [M+ + 1], 469 [M+], 427, 382, 354, 334, 315, 290, 272, 244, 227, 200, 171, 155, 139, 120, 91, 65.