Subscribe to RSS
DOI: 10.1055/s-2005-863741
A New Preparative Route to Substituted Carbazoles by Benzannulation
Publication History
Publication Date:
09 March 2005 (online)
Abstract
A new regioselective pathway to substituted carbazole derivatives is described here. According to this procedure substituted 2-alkoxycarbonyl-4-acetoxy-9-(p-toluenesulfonyl) carbazoles are obtained by treatment of substituted 6-[2-(p-toluenesulfonylamino)-aryl]-3-alkoxycarbonylhex-3-en-5-ynoic acids with acetic anhydride in the presence of sodium acetate. The latter acids are prepared from the easily available substituted o-iodo-anilines by Sonogashira coupling with propargylic alcohol and Wittig reaction as the key steps. The described benzannulation reaction proceeds in regiospecific fashion and a range of substituents are tolerated.
Key words
annulations - enynes - carbazoles - phenols - heterocycles
-
1a
Knölker H.-J.Reddy KR. Chem. Rev. 2002, 102: 4303 -
1b
Chakraborty DP. In The Alkaloids Vol. 44:Brossi A. Academic Press; New York: 1993. p.257 - 2
Zhang Y.Wada T.Sasabe H. J. Mater. Chem. 1998, 8: 809 - 3
Sonntag M.Strohriegl P. Chem. Mater. 2004, 16: 4736 -
4a
Van Dijken A.Bastiaansen JJAM.Kiggen NMM.Langeveld BMW.Rothe C.Monkman A.Bach I.Stössel P.Brunner K. J. Am. Chem. Soc. 2004, 126: 7718 -
4b
Thomas KRJ.Lin JT.Tao Y.-T.Ko C.-W. J. Am. Chem. Soc. 2001, 123: 9404 - 5
Biswas M.Mishra GC. Makromol. Chem. 1981, 182: 261 - 6
Sunderg RJ. In Comprehensive Heterocyclic Chemistry II Vol. 2:Katritzky AR.Rees CW.Scriven EFV. Elsevier; Oxford: 1996. p.119 -
7a
Kuwahara A.Nakano K.Nozaki K. J. Org. Chem. 2005, 70: 413 -
7b
Lee C.-Y.Lin C.-F.Lee J.-L.Chiu C.-C.Lu W.-D.Wu M.-J. J. Org. Chem. 2004, 69: 2106 -
7c
Liu Z.Larock RC. Org. Lett. 2004, 6: 3739 -
7d
Knölker H.-J.Krahl MP. Synlett 2004, 528 -
7e
Haider N.Käferböck J. Tetrahedron 2004, 60: 6495 -
7f
Crich D.Rumthao S. Tetrahedron 2004, 60: 1513 -
7g
Cai X.Snieckus V. Org. Lett. 2004, 6: 2293 -
7h
Smitrovich JH.Davies IW. Org. Lett. 2004, 6: 533 -
7i
Duval E.Cuny GD. Tetrahedron Lett. 2004, 45: 5411 -
7j
Knölker H.-J. Curr. Org. Synth. 2004, 1: 309 -
7k
Huang Q.Larock RC. J. Org. Chem. 2003, 68: 7342 -
7l
Back TG.Pandyra A.Wulff JE. J. Org. Chem. 2003, 68: 3299 -
7m
Rawat M.Wulff WD. Org. Lett. 2003, 6: 329 -
7n
Knölker H.-J. Chem. Commun. 2003, 1170 -
7o
Scott TL.Söderberg BCG. Tetrahedron 2003, 59: 6323 -
7p
Witulski B.Alayrac C. Angew. Chem. Int. Ed. 2002, 41: 3281 -
7q
Bedford RB.Cazin CSJ. Chem. Commun. 2002, 2310 -
7r
Venkatesh C.Ila H.Junjappa H.Mathur S.Huch V. J. Org. Chem. 2002, 67: 9477 - 8
Serra S.Fuganti C.Moro A. J. Org. Chem. 2001, 66: 7883 ; and references cited therein - 9
Serra S.Fuganti C. Synlett 2002, 1661 - 10
Serra S.Fuganti C. Synlett 2003, 2005 - 11
Yasuhara A.Sakamoto T. Tetrahedron Lett. 1998, 39: 595 -
12a
2-Iodoaniline 8a is commercially available. The substituted 2-iodoanilines 8b, 8c and 8e were prepared from the commercially available 4-methylaniline, 2-nitro-4-methoxyaniline and 4-fluoroaniline, respectively, according to the procedure described by Ma et al. [12b] Ethyl 4-amino-3-iodobenzoate 8d and 4-nitro-2-iodoaniline 8f were prepared from commercially available ethyl 4-aminobenzoate and 4-nitroaniline, respectively by iodination according to the procedure described by Spivey et al. and Adimurthy et al., respectively. [12c] [d]
-
12b
Ma C.Liu X.Li X.Flippen-Anderson J.Yu S.Cook JM. J. Org. Chem. 2001, 66: 4525 -
12c
Spivey AC.McKendrick J.Srikaran R. J. Org. Chem. 2003, 68: 1843 -
12d
Adimurthy S.Ramachandraiah G.Ghosh PK.Bedekar AV. Tetrahedron Lett. 2003, 44: 5099 -
13a
Sonogashira K.Tohda Y.Hagihara N. Tetrahedron Lett. 1975, 4467 -
13b
The coupling reaction was performed in THF solution using 2 equiv of propargyl alcohol, Et3N as base and an equimolar amount of copper and palladium catalysts (0.01 equiv). Iododerivatives 9d and 9f show low solubility in THF and a mixture of THF-DMF was used as solvent.
- 15 For the preparation of this ylide see:
Hudson RF.Chopard PA. Helv. Chim. Acta 1963, 46: 2178 -
16a Only E-isomers of acids 13 were obtained (NMR analysis). The Wittig reaction of ylide 12 with the aldehydes affords the 3-(E)-alkylidene-succinic acid monoalkyl esters in a highly stereoselective way; for previous studies on this reaction see:
Paquette LA.Schulze MM.Bolin D. J. Org. Chem. 1994, 59: 2043 -
16b
Röder E.Krauss H. Liebigs Ann. Chem. 1992, 177
References
The Wittig reaction between aldehydes 11a-f and ylide 12 was performed in toluene-CHCl3 solution. The amount of CHCl3 was adjusted depending on the solubility of the starting aldehydes. The above-mentioned reaction proceeds slowly at r.t. (typically 2 d). Notably, worse results have been obtained by heating the reaction mixture.
17Acids 13a-f (50 mmol) were dissolved in acetic anhydride (48 mL, 0.5 mol). To this solution, anhyd NaOAc (8.2 g, 0.1 mol) and hydroquinone (275 mg, 2.5 mmol) were added in one portion. The obtained heterogeneous mixture was heated at reflux for 1 h under a nitrogen atmosphere. After cooling to r.t., the acetic anhydride was removed in vacuo and the residue was treated with EtOAc (300 mL) and H2O (100 mL). The organic phase was separated, dried (Na2SO4) and concentrated under reduced pressure. The residue was purified by chromatography and crystallization to give carbazoles derivatives 14a-f.
All new compounds were fully characterized. Selected analytical data:
Compound 13e: Anal. Calcd for C22H20FNO6S: C, 59.32; H, 4.53. Found: C, 59.45; H, 4.55. Mp 154 °C. FT-IR (nujol): 670, 954, 1030, 1100, 1189, 1280, 1363, 1448, 1466, 1539, 1594, 1633, 1697 cm-1. 1H NMR (250 MHz, CDCl3): δ = 1.40 (3 H, t, J = 7.2 Hz), 2.31 (3 H, s), 3.54 (2 H, s), 4.36 (2 H, q, J = 7.2 Hz), 6.75 (1 H, s), 7.06-7.20 (2 H, m), 7.16 (2 H, d, J = 8.3 Hz), 7.58 (2 H, d, J = 8.3 Hz), 8.18 (1 H, q, J = 4.4 Hz), 8.27 (1 H, s), 11.25 (1 H, br s). MS (EI): m/z = 446 [M+ + 1], 445 [M+], 290, 262, 246, 216, 200, 172, 155, 91, 65.
Compound 14e: Anal. Calcd for C24H20FNO6S: C, 61.40; H, 4.29. Found: C, 61.50; H, 4.30. Mp 197-198 °C (hexane-CHCl3). FT-IR (nujol): 666, 861, 1027, 1087, 1175, 1207, 1299, 1369, 1417, 1472, 1591, 1722, 1763 cm-1. 1H NMR (250 MHz, CDCl3): δ = 1.46 (3 H, t, J = 7.2 Hz), 2.27 (3 H, s), 2.49 (3 H, s), 4.47 (2 H, q, J = 7.2 Hz), 7.13 (2 H, d, J = 8.3 Hz), 7.27 (1 H, dt, J = 9.0, 2.5 Hz), 7.54 (1 H, dd, J = 8.2, 2.5 Hz), 7.69 (2 H, d, J = 8.3 Hz), 7.85 (1 H, s), 8.31 (1 H, dd, J = 9.0, 4.3 Hz), 8.86 (1 H, s). MS (EI): m/z = 470 [M+ + 1], 469 [M+], 427, 382, 354, 334, 315, 290, 272, 244, 227, 200, 171, 155, 139, 120, 91, 65.