References
1a
Shimizu M.
Hiyama T.
Angew. Chem. Int. Ed.
2005,
44:
214 ; Angew. Chem. 2005, 117, 218
1b
Welch JT.
Eswarakrishnan S.
Fluorine in Bioorganic Chemistry
Wiley;
New York:
1991.
2
Enantiocontrolled Synthesis of Fluoro-Organic Compounds. Stereochemical Challenges and Biomedicinal Targets
Soloshonok VA.
Wiley;
New York:
1999.
3
Chambers RD.
Fluorine in Organic Chemistry
Blackwell;
Oxford:
2004.
For recent reviews on electrophilic fluorination, see:
4a
Ma J.-A.
Cahard D.
Chem. Rev.
2004,
104:
6119
4b
Ibrahim H.
Togni A.
Chem. Commun.
2004,
1147
4c
Lal GS.
Pez GP.
Syvret RG.
Chem. Rev.
1996,
96:
1737
4d
Taylor SD.
Kotoris CC.
Hum G.
Tetrahedron
1999,
55:
12431
4e
Muniz K. In Organic Synthesis Highlights V
Schmalz H.-G.
Wirth T.
Wiley-VCH;
Weinheim:
2003.
5a
Singh RP.
Shreeve JM.
Acc. Chem. Res.
2004,
37:
31
5b
Nyffeler PT.
Duron SG.
Burkart MD.
Vincent SP.
Wong C.-H.
Angew. Chem. Int. Ed.
2005,
44:
192 ; Angew. Chem. 2005, 117, 196
6a
Hintermann L.
Togni A.
Angew. Chem. Int. Ed.
2000,
39:
4359 ; Angew. Chem. 2000, 112, 4530
6b
Frantz R.
Hintermann L.
Perseghini M.
Broggini D.
Togni A.
Org. Lett.
2003,
5:
1709
6c
Togni A.
Mezzetti A.
Barthazy P.
Becker C.
Devillers I.
Frantz R.
Hintermann L.
Perseghini M.
Sanna M.
Chimia
2001,
55:
801
7a
Hamashima Y.
Yagi K.
Takano H.
Tamás L.
Sodeoka M.
J. Am. Chem. Soc.
2002,
124:
14530
7b
Hamashima Y.
Yagi K.
Takano H.
Hotta D.
Sodeoka M.
Org. Lett.
2003,
5:
3225
7c
Ma J.-A.
Cahard D.
Tetrahedron: Asymmetry
2004,
15:
1007
7d
Shibata N.
Ishimaru T.
Nagai T.
Kohno J.
Toru T.
Synlett
2004,
1703
8a
Kim DY.
Park EJ.
Org. Lett.
2002,
4:
545
8b For the α-fluorination of cyclic ketones to quaternary stereogenic centers with stoichiometric amounts of cinchona alkaloids, see: Shibata N.
Suzuki E.
Asahi T.
Shiro M.
J. Am. Chem. Soc.
2001,
123:
7001
8c
Shibata N.
Suzuki E.
Takeuchi Y.
J. Am. Chem. Soc.
2000,
122:
10728
8d
Cahard D.
Audouard C.
Plaquevent J.-C.
Roques N.
Org. Lett.
2000,
2:
3699
9a
Marigo M.
Bachmann S.
Halland N.
Braunton A.
Jørgensen KA.
Angew. Chem. Int. Ed.
2004,
43:
5507 ; Angew. Chem. 2004, 116, 5623
9b
Halland N.
Braunton A.
Bachmann S.
Marigo M.
Jørgensen KA.
J. Am. Chem. Soc.
2004,
126:
4790
9c
Marigo M.
Kumaragurubaran N.
Jørgensen KA.
Chem.-Eur. J.
2004,
10:
2133
9d
Brochu MP.
Brown SP.
MacMillan DWC.
J. Am. Chem. Soc.
2004,
126:
4108
9e
Wack H.
Taggi AE.
Hafez AM.
Drury WJ.
Lectka T.
J. Am. Chem. Soc.
2001,
123:
1531
10
Mase N.
Tanaka F.
Barbas CF.
Angew. Chem. Int. Ed.
2004,
43:
2420 ; Angew. Chem. 2004, 116, 2474
11
General Procedure for the Preparation of α-Fluoro-aldehydes and a-Fluoroketones.
To a stirred mixture of carbonyl compound 1 (1.0 mmol) and (S)-proline 3a (0.3 mmol) in MeCN (2 mL) was added Selectfluor (1.5 mmol) in one portion at 0 °C. Afterwards trifluoro acetic acid (0.3 mmol) was added and the reaction mixture was stirred at r.t. (0 °C in case of the aldehydes) until the reaction was complete (monitored by GC). Purification by flash chromatography or filtration through a short silica plug, respectively, afforded the pure product 2.
12
Purrington ST.
Lazaridis NV.
Bumgardner CL.
Tetrahedron Lett.
1986,
27:
2715
13
Reduction of the α-Fluoroaldehydes 2a-d with NaBH
4
.
To the crude reaction mixture of α-fluoroaldehyde 2 MeOH (1 mL) and NaBH4 (2.0 mmol) were subsequently added. The mixture was stirred until complete conversion (monitored by TLC), followed by evaporation of the solvents. Purification of the crude product by flash chromatography afforded the pure β-fluoroalcohols.
14
Representative Spectroscopic Data.
2-Fluoro-3-phenyl-propan-1-ol (reduced 2d): 1H NMR (300 MHz, CDCl3): δ = 2.20 (br s, 1 H, OH), 2.97 (m, 2 H, CH
2Ph), 3.65 (ddd, J = 23.25, 12.62, 5.94 Hz, 1 H, CH
aHbOH), 3.74 (ddd, J = 25.47, 12.61, 2.97 Hz, 1 H, CHa
H
bOH), 4.76 (dm, J = 48.72 Hz, 1 H, CHF), 7.28 (m, 5 H, Ph) ppm. 13C NMR (75 MHz, CDCl3): δ = 37.45 (d, J
C,F = 20.9 Hz, CH2), 64.09 (CH2), 94.65 (d, J
C,F = 171.8 Hz, CHF), 126.77 (Ar-CH), 128.59 (2 C, Ar-CH), 129.31 (2 C, Ar-CH), 205.71 (d, J
C,F = 5.4 Hz, Ar-C) ppm. 19F NMR (282 MHz, CDCl3): δ = -187.35 (m, CHF) ppm. The spectroscopic data were in accordance with those reported in the literature.
[15]
15
Takeuchi Y.
Nagata K.
Koizumi T.
J. Org. Chem.
1989,
54:
5453
16
Representative Spectroscopic Data.
2-Fluorocyclohexan-1-one (2e): 1H NMR (400 MHz, CDCl3): δ = 1.70 (m, 2 H, CH
2), 1.88 (m, 1 H, CH
2), 2.02 (m, 2 H, CH
2), 2.34 (m, 1 H, CH
2), 2.56 (m, 1 H, CH
2), 4.90 (dddd, J = 48.90, 11.26, 6.32, 1.22 Hz, 1 H, CHF) ppm. 13C NMR (100 MHz, CDCl3): δ = 22.75 (d, J
C,F = 9.9 Hz, CH2), 26.91 (CH2), 34.18 (d, J
C,F = 18.9 Hz, CH2), 40.21 (CH2), 92.58 (d, J
C,F = 188.9 Hz, CHF), 205.71 (d, J
C,F = 188.9 Hz, C=O) ppm. 19F NMR (376 MHz, CDCl3): δ = -188.23 (d, J = 50,5 Hz, CHF) ppm. The spectroscopic data were in accordance with those reported in the literature.
[17]
17a
Enders D.
Potthoff M.
Dissertation
RWTH Aachen;
Germany:
1997.
17b
Enders D.
Potthoff M.
Raabe G.
Runsink J.
Angew. Chem., Int. Ed. Engl.
1997,
36:
2362 ; Angew. Chem. 1997, 109, 2454
17c
Enders D.
Faure S.
Potthoff M.
Runsink J.
Synthesis
2001,
230