References
-
1a
Shimizu M.
Hiyama T.
Angew. Chem. Int. Ed.
2005,
44:
214 ; Angew. Chem. 2005, 117, 218
-
1b
Welch JT.
Eswarakrishnan S.
Fluorine in Bioorganic Chemistry
Wiley;
New York:
1991.
- 2
Enantiocontrolled Synthesis of Fluoro-Organic Compounds. Stereochemical Challenges and Biomedicinal Targets
Soloshonok VA.
Wiley;
New York:
1999.
- 3
Chambers RD.
Fluorine in Organic Chemistry
Blackwell;
Oxford:
2004.
-
For recent reviews on electrophilic fluorination, see:
-
4a
Ma J.-A.
Cahard D.
Chem. Rev.
2004,
104:
6119
-
4b
Ibrahim H.
Togni A.
Chem. Commun.
2004,
1147
-
4c
Lal GS.
Pez GP.
Syvret RG.
Chem. Rev.
1996,
96:
1737
-
4d
Taylor SD.
Kotoris CC.
Hum G.
Tetrahedron
1999,
55:
12431
-
4e
Muniz K. In Organic Synthesis Highlights V
Schmalz H.-G.
Wirth T.
Wiley-VCH;
Weinheim:
2003.
-
5a
Singh RP.
Shreeve JM.
Acc. Chem. Res.
2004,
37:
31
-
5b
Nyffeler PT.
Duron SG.
Burkart MD.
Vincent SP.
Wong C.-H.
Angew. Chem. Int. Ed.
2005,
44:
192 ; Angew. Chem. 2005, 117, 196
-
6a
Hintermann L.
Togni A.
Angew. Chem. Int. Ed.
2000,
39:
4359 ; Angew. Chem. 2000, 112, 4530
-
6b
Frantz R.
Hintermann L.
Perseghini M.
Broggini D.
Togni A.
Org. Lett.
2003,
5:
1709
-
6c
Togni A.
Mezzetti A.
Barthazy P.
Becker C.
Devillers I.
Frantz R.
Hintermann L.
Perseghini M.
Sanna M.
Chimia
2001,
55:
801
-
7a
Hamashima Y.
Yagi K.
Takano H.
Tamás L.
Sodeoka M.
J. Am. Chem. Soc.
2002,
124:
14530
-
7b
Hamashima Y.
Yagi K.
Takano H.
Hotta D.
Sodeoka M.
Org. Lett.
2003,
5:
3225
-
7c
Ma J.-A.
Cahard D.
Tetrahedron: Asymmetry
2004,
15:
1007
-
7d
Shibata N.
Ishimaru T.
Nagai T.
Kohno J.
Toru T.
Synlett
2004,
1703
-
8a
Kim DY.
Park EJ.
Org. Lett.
2002,
4:
545
-
8b For the α-fluorination of cyclic ketones to quaternary stereogenic centers with stoichiometric amounts of cinchona alkaloids, see: Shibata N.
Suzuki E.
Asahi T.
Shiro M.
J. Am. Chem. Soc.
2001,
123:
7001
-
8c
Shibata N.
Suzuki E.
Takeuchi Y.
J. Am. Chem. Soc.
2000,
122:
10728
-
8d
Cahard D.
Audouard C.
Plaquevent J.-C.
Roques N.
Org. Lett.
2000,
2:
3699
-
9a
Marigo M.
Bachmann S.
Halland N.
Braunton A.
Jørgensen KA.
Angew. Chem. Int. Ed.
2004,
43:
5507 ; Angew. Chem. 2004, 116, 5623
-
9b
Halland N.
Braunton A.
Bachmann S.
Marigo M.
Jørgensen KA.
J. Am. Chem. Soc.
2004,
126:
4790
-
9c
Marigo M.
Kumaragurubaran N.
Jørgensen KA.
Chem.-Eur. J.
2004,
10:
2133
-
9d
Brochu MP.
Brown SP.
MacMillan DWC.
J. Am. Chem. Soc.
2004,
126:
4108
-
9e
Wack H.
Taggi AE.
Hafez AM.
Drury WJ.
Lectka T.
J. Am. Chem. Soc.
2001,
123:
1531
- 10
Mase N.
Tanaka F.
Barbas CF.
Angew. Chem. Int. Ed.
2004,
43:
2420 ; Angew. Chem. 2004, 116, 2474
- 12
Purrington ST.
Lazaridis NV.
Bumgardner CL.
Tetrahedron Lett.
1986,
27:
2715
- 15
Takeuchi Y.
Nagata K.
Koizumi T.
J. Org. Chem.
1989,
54:
5453
-
17a
Enders D.
Potthoff M.
Dissertation
RWTH Aachen;
Germany:
1997.
-
17b
Enders D.
Potthoff M.
Raabe G.
Runsink J.
Angew. Chem., Int. Ed. Engl.
1997,
36:
2362 ; Angew. Chem. 1997, 109, 2454
-
17c
Enders D.
Faure S.
Potthoff M.
Runsink J.
Synthesis
2001,
230
11
General Procedure for the Preparation of α-Fluoro-aldehydes and a-Fluoroketones.
To a stirred mixture of carbonyl compound 1 (1.0 mmol) and (S)-proline 3a (0.3 mmol) in MeCN (2 mL) was added Selectfluor (1.5 mmol) in one portion at 0 °C. Afterwards trifluoro acetic acid (0.3 mmol) was added and the reaction mixture was stirred at r.t. (0 °C in case of the aldehydes) until the reaction was complete (monitored by GC). Purification by flash chromatography or filtration through a short silica plug, respectively, afforded the pure product 2.
13
Reduction of the α-Fluoroaldehydes 2a-d with NaBH
4
.
To the crude reaction mixture of α-fluoroaldehyde 2 MeOH (1 mL) and NaBH4 (2.0 mmol) were subsequently added. The mixture was stirred until complete conversion (monitored by TLC), followed by evaporation of the solvents. Purification of the crude product by flash chromatography afforded the pure β-fluoroalcohols.
14
Representative Spectroscopic Data.
2-Fluoro-3-phenyl-propan-1-ol (reduced 2d): 1H NMR (300 MHz, CDCl3): δ = 2.20 (br s, 1 H, OH), 2.97 (m, 2 H, CH
2Ph), 3.65 (ddd, J = 23.25, 12.62, 5.94 Hz, 1 H, CH
aHbOH), 3.74 (ddd, J = 25.47, 12.61, 2.97 Hz, 1 H, CHa
H
bOH), 4.76 (dm, J = 48.72 Hz, 1 H, CHF), 7.28 (m, 5 H, Ph) ppm. 13C NMR (75 MHz, CDCl3): δ = 37.45 (d, J
C,F = 20.9 Hz, CH2), 64.09 (CH2), 94.65 (d, J
C,F = 171.8 Hz, CHF), 126.77 (Ar-CH), 128.59 (2 C, Ar-CH), 129.31 (2 C, Ar-CH), 205.71 (d, J
C,F = 5.4 Hz, Ar-C) ppm. 19F NMR (282 MHz, CDCl3): δ = -187.35 (m, CHF) ppm. The spectroscopic data were in accordance with those reported in the literature.
[15]
16
Representative Spectroscopic Data.
2-Fluorocyclohexan-1-one (2e): 1H NMR (400 MHz, CDCl3): δ = 1.70 (m, 2 H, CH
2), 1.88 (m, 1 H, CH
2), 2.02 (m, 2 H, CH
2), 2.34 (m, 1 H, CH
2), 2.56 (m, 1 H, CH
2), 4.90 (dddd, J = 48.90, 11.26, 6.32, 1.22 Hz, 1 H, CHF) ppm. 13C NMR (100 MHz, CDCl3): δ = 22.75 (d, J
C,F = 9.9 Hz, CH2), 26.91 (CH2), 34.18 (d, J
C,F = 18.9 Hz, CH2), 40.21 (CH2), 92.58 (d, J
C,F = 188.9 Hz, CHF), 205.71 (d, J
C,F = 188.9 Hz, C=O) ppm. 19F NMR (376 MHz, CDCl3): δ = -188.23 (d, J = 50,5 Hz, CHF) ppm. The spectroscopic data were in accordance with those reported in the literature.
[17]