Synlett 2005(6): 0905-0910  
DOI: 10.1055/s-2005-864821
LETTER
© Georg Thieme Verlag Stuttgart · New York

Palladium-Catalyzed Suzuki-Miyaura Coupling Reactions Involving β,β-Dihaloenamides: Application to the Synthesis of Disubstituted Ynamides

Sylvain Couty, Marion Barbazanges, Christophe Meyer, Janine Cossy*
Laboratoire de Chimie Organique, associé au CNRS, ESPCI, 10 rue Vauquelin, 75231 Paris Cedex 05, France
Fax: +33(1)407946.60; e-Mail: janine.cossy@espci.fr;
Further Information

Publication History

Received 22 December 2004
Publication Date:
23 March 2005 (online)

Abstract

β,β-Dihaloenamides can be successfully involved in ­palladium-catalyzed Suzuki-Miyaura coupling reactions. Whereas the resulting trisubstituted (Z)-β-bromoenamides could participate in a second cross-coupling leading to β,β-disubstituted enamides, the (Z)-β-chloroenamides have been converted to disubstituted ­ynamides by an E2 elimination.

    References

  • Pd- and Ni-catalyzed cross-coupling reactions with Grignard reagents:
  • 1a Minato A. Suzuki K. Tamao K. J. Am. Chem. Soc.  1987,  109:  1257 
  • 1b Braun M. Rahematpura J. Bühne C. Paulitz TC. Synlett  2000,  1070 
  • 1c Uenishi J. Ohmi M. Heterocycles  2003,  61:  365 
  • 1d Braun M. Hohmann A. Rahematpura J. Bühne C. Grimme S. Chem. Eur. J.  2004,  10:  4584 
  • 2 Iron-catalyzed coupling reactions between 1,1-dichloro-1-alkenes and Grignard reagents have been recently reported, see: Dos Santos M. Franck X. Hocquemiller R. Figadère B. Peyrat J.-F. Provot O. Brion J.-D. Alami M. Synlett  2004,  2697 
  • Cross-coupling reactions with organozinc reagents:
  • 3a Minato A. J. Org. Chem.  1991,  56:  4052 
  • 3b Panek JS. Hu T. J. Org. Chem.  1997,  62:  4912 
  • 3c Xu C. Negishi E.-I. Tetrahedron Lett.  1999,  40:  431 
  • 3d Ogasawara M. Ikeda H. Ohtsuki K. Hayashi T. Chem. Lett.  2000,  776 
  • 3e Ogasawara M. Ikeda H. Hayashi T. Angew. Chem. Int. Ed.  2000,  39:  1042 
  • 3f Shi J.-C. Zeng X. Negishi E.-I. Org. Lett.  2003,  5:  1825 
  • 3g Zeng X. Hu Q. Qian M. Negishi E.-I. J. Am. Chem. Soc.  2003,  125:  13636 
  • 3h Shi J.-C. Negishi E.-I. J. Organomet. Chem.  2003,  687:  518 
  • 4 Cross-coupling reactions with organostannanes: Shen W. Wang L. J. Org. Chem.  1999,  64:  8873 
  • Cross-coupling reactions with organoboranes:
  • 5a Roush WR. Riva R. J. Org. Chem.  1988,  53:  710 
  • 5b Roush WR. Brown BB. Drozda SE. Tetrahedron Lett.  1988,  29:  3541 
  • 5c Roush WR. Moriarty KJ. Brown BB. Tetrahedron Lett.  1990,  31:  6509 
  • 5d Roush WR. Koyama K. Curtin ML. Moriarty KJ. J. Am. Chem. Soc.  1996,  118:  7502 
  • 5e Shen W. Synlett  2000,  737 
  • 5f Bauer A. Miller MW. Vice SF. McCombie SW. Synlett  2001,  254 
  • For the use of Ba(OH)2 as the base, see:
  • 5g Watanabe T. Miyaura N. Suzuki A. Synlett  1992,  207 
  • 5h Baldwin JE. Chesworth R. Parker JS. Russell AT. Tetrahedron Lett.  1995,  36:  9551 
  • 5i Wong LS.-M. Sharp LA. Xavier NMC. Turner P. Sherburn MS. Org. Lett.  2002,  4:  1955 
  • Cross-coupling reactions with alkynylcopper reagents:
  • 6a Ratovelomanana V. Hammoud A. Linstrumelle G. Tetrahedron Lett.  1987,  28:  1649 
  • 6b Bryant-Friedrich A. Neidlein R. Synthesis  1995,  1506 
  • 6c Shen W. Thomas SA. Org. Lett.  2000,  2:  2857 
  • 6d Myers AG. Goldberg SD. Angew. Chem. Int. Ed.  2000,  39:  2732 
  • 6e Uenishi J. Matsui K. Tetrahedron Lett.  2001,  42:  4353 
  • 6f Uenishi J. Matsui K. Ohmiya H. J. Organomet. Chem.  2002,  653:  141 
  • Exceptions to this trend appear restricted to particular classes of substrates. 1-Chloro-1-iodo-alkenes having the more reactive carbon-iodine bond [towards oxidative addition of Pd(0) complexes] at the cis position:
  • 7a Alami M. Crousse B. Linstrumelle G. Tetrahedron Lett.  1995,  36:  3687 
  • 1,1-Dibromoalkenes bearing a suitably located carbon-carbon triple bond in the side chain undergo oxidative addition of Pd(0) complexes at the cis carbon-bromine leading to the alkyne carbopalladation followed by cross-coupling:
  • 7b Torii S. Okumoto H. Tadokoro T. Nishimura A. Rashid MA. Tetrahedron Lett.  1993,  34:  2139 
  • 7c Nuss JM. Rennels RA. Levine BH. J. Am. Chem. Soc.  1993,  115:  6991 
  • 7d McAlonan H. Montgomery D. Stevenson PJ. Tetrahedron Lett.  1996,  37:  7151 
  • 8a Glazunova EY. Lutsenko SV. Efimova IV. Trostyanskaya IG. Kazankova MA. Beletskaya IP. Russ. J. Org. Chem.  1998,  34:  1104 
  • 8b Kazankova MA. Trostyanskaya IG. Lutsenko SV. Efimova IV. Beletskaya IP. Russ. J. Org. Chem.  1999,  35:  1273 
  • 9a Smithers RH. J. Org. Chem.  1983,  48:  2095 
  • 9b Barluenga J. Rodriguez MA. Campos PJ. Asensio G. J. Am. Chem. Soc.  1988,  110:  5567 
  • 9c Percy JM. Wilkes RD. Tetrahedron  1997,  53:  14749 
  • 9d Uneyama K. Kato T. Tetrahedron Lett.  1998,  39:  587 
  • 9e Fujiwara M. Ichikawa J. Okauchi T. Minami T. Tetrahedron Lett.  1999,  40:  7261 
  • 11 Brückner D. Synlett  2000,  1402 
  • 14e

    The Pd-catalyzed hydrogenolysis of the gem-dibromo-enamide 13 with n-Bu3SnH led to the (Z)-b-bromoenamide 26 (55%), whose configuration was readily assigned by 1H NMR, and to the fully reduced enamide 27 (15%) as a by-product. However, no trace of the (E) geometrical isomer of compound 26 could be detected. A similar hydrogenolysis of the gem-dichloroenamides could not be achieved (Scheme [4] ).

    Scheme 4

    This result confirms that in b,b-dihaloenamides of type A, the oxidative addition of Pd(0) complexes occurs at the less-hindered carbon-halogen bond, as in the non-hetero-substituted series. For the Pd-catalyzed hydrogenolysis of 1,1-dibromoalkenes, see:

  • 14a Uenishi J. Kawahama R. Yonemitsu O. Tsuji J. J. Org. Chem.  1996,  61:  5716 
  • 14b Uenishi J. Kawahama R. Shiga Y. Yonemitsu O. Tsuji J. Tetrahedron Lett.  1996,  37:  6759 
  • 14c Uenishi J. Kawahama R. Yonemitsu O. Tsuji J. J. Org. Chem.  1998,  63:  8965 
  • 14d Uenishi J. Kawahama R. Izaki Y. Yonemitsu O. Tetrahedron  2000,  56:  3493 
  • 16 Some chiral disubstituted ynamides have been synthesized from enamides by bromination (Br2 or NBS) leading to stereomeric mixtures of β-bromoenamides, in which the (Z) isomer was selectively converted to the desired disubstituted ynamide by treatment with a base (t-BuOK, THF) whereas the (E) isomer did not react; see: Wei L.-L. Mulder JA. Xiong H. Zificsak CA. Douglas CJ. Hsung RP. Tetrahedron  2001,  57:  459 
  • 17 Zificsak CA. Mulder JA. Hsung RP. Rameshkumar C. Wei L.-L. Tetrahedron  2001,  57:  7575 ; and references therein
  • 18 Witulski B. Gößmann M. Synlett  2000,  1793 
  • 19 Mulder JA. Kurtz KCM. Hsung RP. Synlett  2003,  1379 ; and references therein
  • 20a Frederick MO. Mulder JA. Tracey MR. Hsung RP. Huang J. Kurtz KCM. Shen L. Douglas CJ. J. Am. Chem. Soc.  2003,  125:  2368 
  • 20b Dunetz JR. Danheiser RL. Org. Lett.  2003,  5:  4011 
  • 20c Zhang Y. Hsung RP. Tracey MR. Kurtz KCM. Vera EL. Org. Lett.  2004,  6:  1151 
  • 21a Rodríguez D. Castedo L. Saá C. Synlett  2004,  377 
  • 21b Rodríguez D. Castedo L. Saá C. Synlett  2004,  783 
  • 21c Tracey MR. Zhang Y. Frederick MO. Mulder JA. Hsung RP. Org. Lett.  2004,  6:  2209 
10

Tosylation of but-3-enylamine hydrochloride, benzylamine and p-anisidine (TsCl, Et3N, CH2Cl2, 0 °C to r.t.) afforded the corresponding sulfonamides 1a (58%), 1b (77%) and 1c (84%), respectively. Benzoylation of aminoacetaldehyde dimethylacetal (BzCl, Et3N, cat. DMAP, CH2Cl2, 0 °C) provided the benzamide 1d (87%).

12

Representative Procedure: N -Benzyl- N -[( Z )-2-chloro-2-phenylvinyl]-4-methylbenzenesulfonamide (7).
To a solution of the gem-dichloroenamide 3b (178 mg, 0.500 mmol) in THF (10 mL) were successively added benzeneboronic acid (98 mg, 0.80 mmol, 1.6 equiv), a 1 M aq solution of NaOH (1.50 mL, 1.50 mmol, 3 equiv) and Pd(PPh3)4 (29 mg, 0.025 mmol, 0.05 equiv). After 3 h at reflux, the reaction mixture was cooled to r.t., filtered through a pad of Celite (EtOAc) and the filtrate was evaporated under reduced pressure. The crude material was purified by flash chomatography (petroleum ether-EtOAc, 90:10) to afford 195 mg (98%) of 7 as a white solid; mp 124 °C. IR: 1595, 1490, 1445, 1345, 1160, 1090, 1030, 915, 815, 780, 760, 740 cm-1. 1H NMR (300 MHz, CDCl3): δ = 7.76 (d, J = 8.3 Hz, 2 H), 7.37-7.24 (m, 12 H), 6.53 (s, 1 H), 4.81 (s, 2 H), 2.43 (s, 3 H). 13C NMR (75 MHz, CDCl3): δ = 143.8 (s), 136.7 (s), 136.05 (s), 136.0 (s), 132.9 (s), 129.7 (d, 2 C), 129.4 (d), 128.49 (d, 3 C or 2 C), 128.47 (d, 2 C or 3 C), 128.4 (d), 127.8 (d), 127.3 (d, 2 C), 126.9 (d, 2 C), 122.9 (d), 52.2 (t), 21.6 (q). MS (EI, 70 eV): m/z (%) = 400 (1) [M(37Cl) + H+], 399 (3) [M(37Cl)+], 398 (2) [M(35Cl) + H+], 397 (9) [M(35Cl)+], 362 (1) [M - Cl+], 242 (4) [M - Ts+], 206 (5), 178 (2), 155 (2), 92 (8), 91 (100), 89 (4), 65 (7). Anal. Calcd for C22H20ClNO2S: C, 66.40; H, 5.07; N, 3.52. Found: C, 66.47; H, 4.99; N, 3.48.

13

In all the cross-couplings investigated, GC-MS and NMR analyses of the crude β-haloenamides indicate a stereoisomeric ratio > 95:5.

15

The (Z)-olefinic configuration of the β-chloroenamides of type B was further confirmed by their ability to undergo dehydrochlorination (E2 anti-elimination) by treatment with a base, whereas the (E) geometrical isomers would not react under these conditions, see ref. 16.

22

Representative Procedure: N -Benzyl- N -(2-phenylethynyl)-4-methylbenzenesulfonamide ( 21).
To a solution of β-chloroenamide 7 (100 mg, 0.251 mmol) in toluene (10 mL) were successively added 50% aq NaOH (10 mL) and tetrabutylammonium hydrogensulfate (17 mg, 0.050 mmol, 0.2 equiv) and the resulting mixture was vigorously stirred at r.t. After 7 h, the reaction mixture was cooled to 5 °C, and diluted with H2O and Et2O. The layers were separated and the aqueous phase was extracted with Et2O. The combined extracts were washed with a sat. aq solution of NH4Cl, brine, dried over MgSO4, filtered and concentrated under reduced pressure. The residue was purified by flash chromatography (petroleum ether-EtOAc, 95:5) to afford 74 mg (81%) of 21 as a pale yellow waxy solid. IR: 3060, 3030, 2235, 1595, 1490, 1445, 1420, 1355, 1160, 1050, 1030, 940, 815, 765, 690, 655 cm-1. 1H NMR (300 MHz, CDCl3): δ = 7.77 (d, J = 8.3 Hz, 2 H), 7.30-7.14 (m, 12 H), 4.55 (s, 2 H), 2.40 (s, 3 H). 13C NMR (75 MHz, CDCl3): δ = 144.7 (s), 134.7 (s), 134.5 (s), 131.1 (d, 2 C), 129.8 (d, 2 C), 128.9 (d, 2 C or 3 C), 128.6 (d, 2 C), 128.2 (d, 3 C), 127.7 (d, 3 C or 2 C), 122.8 (s), 82.7 (s), 71.4 (s), 55.7 (t), 21.7 (q). MS (EI, 70 eV): m/z (%) = 361 (21) [M+], 207 (9), 206 (45) [M - Ts+], 205 (6), 179 (26), 178 (11), 165 (3), 155 (3), 105 (6), 92 (8), 91 (100), 65 (13).