References
1a
Colvin EW.
Silicon Reagents in Organic Synthesis
Academic Press;
London:
1988.
1b
Patai S.
Rappoport Z.
The Chemistry of Organosilicon Compounds
Chap. 3:
Wiley;
Chichester:
1988.
1c
Fleming I.
Barbero A.
Walter D.
Chem. Rev.
1997,
97:
2063
1d
Gröbel BT.
Seebach D.
Angew. Chem., Int. Ed. Engl.
1974,
13:
83
1e
Padwa A.
MacDonald JG.
J. Org. Chem.
1983,
48:
3189
1f
Inoue A.
Kondo J.
Shinokubo H.
Oshima K.
Chem. Commun.
2002,
114
1g
Inoue A.
Kondo J.
Shinokubo H.
Oshima K.
J. Am. Chem. Soc.
2001,
123:
11109
1h
Hodgson DM.
Comina PJ.
Drew MGB.
J. Chem. Soc., Perkin Trans. 1
1997,
2279
2a
Tamao K.
Kobayashi K.
Ito Y.
Tetrahedron Lett.
1989,
30:
6051
2b
Denmark SE.
Wehrli D.
Choi Y.
Org. Lett.
2000,
2:
2491
2c
Denmark SE.
Neuville L.
Org. Lett.
2000,
2:
3221
2d
Denmark SE.
Pan W.
Org. Lett.
2001,
3:
61
2e
Denmark SE.
Wang Z.
J. Organomet. Chem.
2001,
624:
372
3a
Chen RM.
Luh TY.
Tetrahedron
1998,
54:
1197
3b
Li LH.
Wang D.
Chan TH.
Tetrahedron Lett.
1996,
38:
101
3c
Chen RM.
Weng WW.
Luh TY.
J. Org. Chem.
1995,
60:
3272
3d
Sudhakar S.
Lee GH.
Wang Y.
Hsu JH.
Luh TY.
J. Organomet. Chem.
2002,
646:
167
3e
Mizojiri R.
Urabe H.
Sato F.
J. Org. Chem.
2000,
65:
6217
3f
Nakamura E.
Kubota K.
Tetrahedron Lett.
1997,
40:
7099
3g
Chen RM.
Chien KM.
Wong KT.
Jin BY.
Luh TY.
J. Am. Chem. Soc.
1997,
119:
11321
4a
Marciniec B.
Pietraszuk C.
Kownacki I.
Zaidlewicz M.
Vinyl- and Aryl Silicon Germanium and Boron Compounds, In Comprehensive Organic Functional Group Transformations
Katritzky AR.
Taylor JK.
Elsevier;
Oxford:
2005.
p.941-1023
4b
Fleming I.
Floyd CD.
J. Chem. Soc., Perkin Trans. 1
1981,
969
4c
Kira M.
Hino T.
Kubota Y.
Matsuyama N.
Sakurai H.
Tetrahedron Lett.
1988,
29:
6939
4d
Fleming I.
Ghosh U.
J. Chem. Soc., Perkin Trans. 1
1994,
257
4e
Narasaka K.
Saito N.
Hayashi Y.
Ichida H.
Chem. Lett.
1990,
1411
4f
Negishi E.
Boardman LD.
Sawada H.
Bagheri V.
Stoll AT.
Tour JM.
Rand CL.
J. Am. Chem. Soc.
1988,
110:
5383
4g
Flann C.
Malone TC.
Overman LE.
J. Am. Chem. Soc.
1987,
109:
6097
4h
Inoue A.
Kondo J.
Shinokubo H.
Oshima K.
Chem. Lett.
2001,
956
4i
Kondo J.
Inoue A.
Shinokubo H.
Oshima K.
Tetrahedron Lett.
2002,
43:
2399
4j
Inoue A.
Kondo J.
Shinokubo H.
Oshima K.
Chem.-Eur. J.
2002,
8:
1730
For reviews see:
5a
Marciniec B.
Pietraszuk C.
Curr. Org. Chem.
2003,
7:
691
5b
Marciniec B.
Pietraszuk C. In Topics in Organometallic Chemistry. Synthesis of Silicon Derivatives with Ruthenium Catalysts
Dixneuf P.
Springer;
Berlin:
2004.
p.197-248
5c
Marciniec B.
Pietraszuk C. In Handbook of Metathesis
Vol. 2:
Grubbs RH.
Wiley-VCH;
Weinheim:
2003.
Chap. 13.
5d
Marciniec B.
Appl. Organomet. Chem.
2000,
14:
527
6a
Wakatsuki Y.
Yamazaki H.
Nakano N.
Yamamoto Y.
J. Chem. Soc., Chem. Commun.
1991,
703
6b
Marciniec B.
Pietraszuk C.
J. Chem. Soc., Chem. Commun.
1995,
2003
6c
Marciniec B.
Pietraszuk C.
Organometallics
1997,
16:
4320
7a
Marciniec B.
Lewandowski M.
Tetrahedron Lett.
1997,
38:
3777
7b
Mise T.
Takaguchi Y.
Umemiya T.
Shimizu S.
Wakatsuki Y.
Chem. Commun.
1998,
699
7c
Marciniec B.
Lewandowski M.
Bijpost E.
Maecka E.
Kubicki M.
Walczuk-Guœciora E.
Organometallics
1999,
20:
3968
7d
Marciniec B.
Maecka E.
Macromol. Symp.
2001,
174:
137
8
Pawluc P.
Marciniec B.
Hreczycho G.
Gaczewska B.
Itami Y.
J. Org. Chem.
2005,
70:
370
9
Synthesis and characterization of
N
,
N
′-dimethyl-
N
,
N
′-bis(dimethylvinylsilyl)ethane-1,2-diamine (1): Anhydrous triethylamine (20.8 mL, 0.15 mol) in anhydrous pentane (200 mL) was introduced into a flame-dried three-necked, 500 mL round-bottomed flask equipped with a magnetic stirring bar, rubber septum cap, and argon bubbling tube. To the resulting solution N,N′-dimethylethane-1,2-diamine (7.32 mL, 0.068 mol) was added. Chlorodimethylvinylsilane (18.1 mL, 0.132 mol) was subsequently added over 1 h and the reaction mixture was stirred under the flow of argon for 2 h at room temperature. After the substrate disappearance was confirmed by GC, the resulting salt was filtered off and the volatiles were removed by evaporation. Distillation under reduced pressure (51-53 °C/0.5 mmHg) afforded 16.2 g of compound 1 in 93% yield as a colorless liquid. 1H NMR (300 MHz, CDCl3):
δ (ppm) = 0.12 (s, 12 H, SiCH3), 2.48 (s, 6 H, NCH3), 2.72 (s, 4 H, CH2), 5.65-5.72 (dd, J = 4.4, 19.8 Hz, 2 H, CH=CH
2), 5.91-5.97 (dd, J = 4.4, 14.8 Hz, 2 H, CH=CH
2), 6.05-6.16 (dd, J = 14.8, 19.8 Hz, 2 H, CH=CH2). 13C NMR (75 MHz, CDCl3): δ (ppm) = -2.32 (SiCH3), 35.23 (NCH3), 50.06 (CH2), 131.55 (CH=CH2), 139.16 (CH=CH2). HRMS (EI): m/z calcd for C12H28N2Si2: 256.1791; found: 256.1801.
10
Synthesis and characterization of 1,2,2,4,4,5-hexamethyl-3-methylene-1,5-diaza-2,4-disilacycloheptane (2): Compound 1 (10.0g, 0.039mol) was added to a solution of 0.283 g [RuHCl(CO)(PCy3)2] (3.9 × 10-4 mol) and toluene (50 mL) in a two-necked, 100 mL flask equipped with a magnetic stirring bar and a reflux condenser. The reaction mixture was heated under a flow of argon for 24 h at 110 °C with stirring. The cyclic product was isolated by bulb-to-bulb distillation to give 8.19 g of compound 2 in 92% yield as a colorless liquid.
1H NMR (300 MHz, CDCl3): δ (ppm) = 0.12 (s, 12 H, SiCH3), 2.47 (s, 6 H, NCH3), 2.83 (s, 4 H, CH2), 6.11 (s, 2 H, C=CH2).
13C NMR (75 MHz, CDCl3): δ (ppm) = -2.28 (SiCH3), 35.67 (NCH3), 49.92 (CH2), 137.87 (C=CH2) 159.29 (C=CH2). Anal. calcd for C10H24N2Si2: C, 52.57; H, 10.59; N, 12.26; Found: C, 51.75; H, 10.56; N, 12.25.
11
Representative procedure for the synthesis of 1,1-bis(alkoxydimethylsilyl)ethenes and spectroscopic data of selected new products: The glass reactor (50 mL, two-necked, round-bottomed flask equipped with a magnetic stirring bar, reflux condenser, and argon bubbling tube) was evacuated and flushed with argon. 1,2,2,4,4,5-Hexamethyl-3-methylene-1,5-diaza-2,4-disilacycloheptane (2) and THF were added to the reactor. At room temperature the corresponding alcohol (2/alcohol = 1:2.5) was added dropwise. The reaction mixture was stirred under the conditions shown in Table
[1]
. After the reaction was complete the excess amount of the alcohol and the solvent were evaporated in vacuo. After evaporation the crude product was distilled under reduced pressure to afford the analytically pure product.
1,1-Bis(methoxydimethylsilyl)ethene (I): 1H NMR (300 MHz, CDCl3): δ (ppm) = 0.18 (s, 12 H, SiCH3), 3.38 (s, 6 H, OCH3), 6.44 (s, 2H, C=CH2). 13C NMR (75 MHz, CDCl3): δ (ppm) = -1.92 (SiCH3), 50.25 (OCH3), 143.52 (C=CH2), 150.88 (C=CH2). Anal. calcd for C8H20O2Si2: C, 47.01; H, 9.86. Found: C, 47.16; H, 9.63.
1,1-Bis(benzyloxydimethylsilyl)ethene (VII): 1H NMR (300 MHz, CDCl3): δ (ppm) = 0.30 (s, 12 H, SiCH3), 4.73 (s, 4 H, OCH2C<), 6.57 (s, 2 H, C=CH2), 7.34-7.39 (m, 10 H, Ph). 13C NMR (75 MHz, CDCl3): δ (ppm) = -1.20 (SiCH3), 64.67 (OCH2C<), 126.44, 126.97, 128.20 (o-, m-, p-Ph), 140.94 (C=CH2), 143.79 (OCH2
C<), 151.17 (C=CH2). Anal. calcd for C20H28O2Si2: C, 67.36; H, 7.91. Found: C, 67.57; H, 7.94.
12
Representative procedure for the one-pot synthesis of 1,1-bis(alkoxydimethylsilyl)ethenes: The glass reactor (50 mL, two-necked, round-bottomed flask equipped with a magnetic stirring bar, reflux condenser, and argon bubbling tube) was evacuated and flushed with argon. Compound 1 and [RuHCl(CO)(PCy3)2] were added to the reactor ( 1/catalyst = 1:10-2). The reaction mixture was heated under the flow of argon for 24 h at 120 °C with stirring. After cooling to room temperature 1 M solution of the corresponding alcohol in THF was added dropwise (1/alcohol = 1:2.5) The reaction mixture was stirred under the conditions shown in Table
[2]
. After the reaction was complete, the excess alcohol and the solvent were evaporated in vacuo. After evaporation, the crude product was distilled under reduced pressure to afford the analytically pure product.