RSS-Feed abonnieren
DOI: 10.1055/s-2005-865620
Georg Thieme Verlag Stuttgart KG · New York
Transcript Profiling in Plastid Arginine tRNA-CCG Gene Knockout Moss: Construction of Physcomitrella patens Plastid DNA Microarray
Publikationsverlauf
Received: December 12, 2004
Accepted: March 23, 2005
Publikationsdatum:
23. Mai 2005 (online)

Abstract
The moss Physcomitrella patens is a newly established model plant that is widely used for the characterization of gene function by targeted gene knockout or over-expression. The target gene disruption occurs in both the nuclear and chloroplast genomes. We applied DNA microarray technology to the P. patens plastid genome for large-scale analysis of transcripts. A microarray was constructed containing 108 DNA fragments to detect all annotated plastid genes. We analyzed the transcript profile in a knockout transformant for the arginine tRNA gene, trnR-CCG, and confirmed previous results that rbcL and psaI transcripts accumulate in similar levels to wild-type moss, and accD transcript level is higher than those of wild-type moss. Additionally, the plastid DNA microarray revealed that most plastid genes were expressed at similar levels in wild-type and transformant mosses. This indicates that trnR-CCG is not essential for the expression of plastid genes.
Key words
Chloroplast - Physcomitrella patens - transcript profiling - microarray.
References
- 1 Erickson B., Stern D. B., Higgs D. C.. Microarray analysis confirms the specificity of a Chlamydomonas reinhardtii chloroplast RNA stability mutant. Plant Physiology. (2005); 137 534-544
- 2 Kenrick P., Crane P. R.. The origin and early evolution of plants on land. Nature. (1997); 389 33-39
- 3 Legen J., Kemp S., Krause K., Profanter B., Herrmann R. G., Maier R. M.. Comparative analysis of plastid transcription profiles of entire plastid chromosomes from tobacco attributed to wild-type and PEP-deficient transcription machineries. The Plant Journal. (2002); 31 171-188
- 4 Maliga P.. Plastid transformation in higher plants. Annual Review of Plant Biology. (2004); 55 289-313
- 5 Maniatis T., Fritsch E. M., Sambroook J.. Molecular Cloning: A Laboratory Manual. Cold Spring Harbor, NY; Cold Spring Harbor Press (1989)
- 6 Miyata Y., Sugiura C., Kobayashi Y., Hagiwara M., Sugita M.. Chloroplast ribosomal S14 protein transcript is edited to create a translation initiation codon in the moss Physcomitrella patens. . Biochimica et Biophysica Acta. (2002); 1576 346-349
- 7 Nakamura T., Furuhashi Y., Hasegawa K., Hashimoto H., Watanabe K., Obokata J., Sugita M., Sugiura M.. Array-based analysis on tobacco plastid transcripts: preparation of a genomic microarray containing all genes and all intergenic regions. Plant and Cell Physiology. (2003); 44 861-867
- 8 Qiu Y. L., Palmer J. D.. Phylogeny of early land plants: insights from genes and genomes. Trends in Plant Science. (1999); 4 26-30
- 9 Quackenbush J.. Microarray data normalization and transformation. Nature Genetics. (2002); 32 496-501
- 10 Schaefer D. G.. Gene targeting in Physcomitrella patens. . Current Opinion of Plant Biology. (2001); 4 143-150
- 11 Schaefer D. G., Zrӱd J. P.. Efficient gene targeting in the moss Physcomitrella patens. . The Plant Journal. (1997); 11 1195-1206
- 12 Sugiura C., Sugita M.. Plastid transformation reveals that moss tRNAArg-CCG is not essential for plastid function. The Plant Journal. (2004); 40 314-321
- 13 Sugiura C., Kobayashi Y., Aoki S., Sugita C., Sugita M.. Complete chloroplast DNA sequence of the moss Physcomitrella patens: evidence for the loss and relocation of rpoA from the chloroplast to the nucleus. Nucleic Acids Research. (2003); 31 5324-5331
- 14 Svab Z., Maliga P.. High-frequency plastid transformation in tobacco by selection for a chimeric aadA gene. Proceedings of the National Academy of Sciences of the USA. (1993); 90 913-917
M. Sugita
Center for Gene Research
Nagoya University
Nagoya 464-8602
Japan
eMail: sugita@gene.nagoya-u.ac.jp
Guest Editor: R. Reski