Subscribe to RSS
DOI: 10.1055/s-2005-865640
Georg Thieme Verlag Stuttgart KG · New York
Isolation and Characterization of New MIKC*-Type MADS-Box Genes from the Moss Physcomitrella patens
Publication History
Received: January 17, 2005
Accepted: April 4, 2005
Publication Date:
23 May 2005 (online)

Abstract
MADS-box genes encode for a large family of transcription-regulating proteins, which were isolated from all groups of eukaryotic organisms. The plant-specific MIKC-type MADS-box genes have been intensively analyzed for their roles in controlling developmental processes. Well-known are the MADS-box genes acting as homeotic selector genes in the differentiation of whorls of floral organs in seed plants. The MADS-box gene family has also been studied in non-flowering plants, such as lycophytes, pteridophytes, and bryophytes. The analysis of MADS-box genes in the moss Physcomitrella patens led to the identification of a new class of MIKC-type genes, designated as MIKC*-type genes. The MIKC*-type genes possess a number of structural features which clearly distinguish them from the already known MIKC-type genes. Recently, orthologues of the Physcomitrella MIKC*-type genes were found in Arabidopsis thaliana, demonstrating the conservation of these genes in tracheophytes. Here, we report the isolation of two new MIKC*-type MADS-box genes from Physcomitrella. Structural features and expression patterns of these genes were analyzed. The contribution of our findings to a better understanding of the evolution of MIKC*-type genes in land plants is discussed.
Key words
Physcomitrella patens - moss - MADS-box gene - MIKC*-type - evolution.
Literature
- 1 Cho S., Jang S., Chae S., Chung K. M., Moon Y.-H., An G., Jang S. K.. Analysis of the C-terminal region of Arabidopsis thaliana APETALA1 as a transcription activation domain. Plant Molecular Biology. (1999); 40 419-429
- 2 Coen E. S., Meyerowitz E. M.. The war of the whorls: genetic interactions controlling flower development. Nature. (1991); 353 31-37
-
3 Davies B., Schwarz-Sommer Z..
Control of floral organ identity by homeotic MADS-box transcription factors. Nover, L., ed. Results and Problems in Cell Differentiation, Vol. 20. Plant Promoters and Transcription Factors. Berlin; Springer (1994): 235-258 - 4 Doyle J. J., Doyle J. L.. A rapid isolation procedure for small quantities of fresh leaf tissue. Phytochemical Bulletin. (1987); 19 11
- 5 Egea-Cortines M., Saedler H., Sommer H.. Ternary complex formation between the MADS-box proteins SQUAMOSA, DEFICIENS and GLOBOSA is involved in the control of floral architecture in Antirrhinum majus. . EMBO Journal. (1999); 18 5370-5379
- 6 Hasebe M., Wen C.-K., Kato M., Banks J. A.. Characterization of MADS homeotic genes in the fern Ceratopteris richardii. . Proceedings of the National Academy of Sciences of the USA. (1998); 95 6222-6227
- 7 He Y., Doyle M. R., Amasino R. M.. PAF1-complex-mediated histone methylation of FLOWERING LOCUS C chromatin is required for the vernalization responsive, winter-annual habit in Arabidopsis. . Genes and Development. (2004); 18 2774-2784
- 8 Hennig L., Gruissem W., Grossniklaus U., Köhler C.. Transcriptional programs of early reproductive stages in Arabidopsis. . Plant Physiology. (2004); 135 1765-1775
- 9 Henschel K., Kofuji R., Hasebe M., Saedler H., Münster T., Theißen G.. Two ancient classes of MIKC-type MADS-box genes are present in the moss Physcomitrella patens. . Molecular Biology and Evolution. (2002); 19 801-814
- 10 Hohe A., Rensing S. A., Mildner M., Lang D., Reski R.. Day length and temperature strongly influence sexual reproduction and expression of a novel MADS-box gene in the moss Physcomitrella patens. . Plant Biology. (2002); 4 595-602
- 11 Honma T., Goto K.. Complexes of MADS-box proteins are sufficient to convert leaves into floral organs. Nature. (2001); 409 525-529
- 12 Kofuji R., Sumikawa N., Yamasaki M., Kondo K., Ueda K., Ito M., Hasebe M.. Evolution and divergence of the MADS-Box gene family based on genome-wide expression analyses. Molecular Biology and Evolution. (2003); 20 1963-1977
- 13 Krogan N. T., Ashton N. W.. Ancestry of plant MADS-box genes revealed by bryophyte (Physcomitrella patens) homologues. New Phytologist. (2000); 147 505-517
- 14 Lang D., Eisinger J., Reski R., Rensing S. A.. Representation and high-quality annotation of the Physcomitrella patens transcriptome demonstrates a high proportion of proteins involved in metabolism in mosses. Plant Biology,. (2005); 7 238-250
- 15 Logemann J., Schell J., Willmitzer L.. Improved methods for the isolation of RNA from plant tissues. Analytical Biochemistry. (1987); 163 16-20
- 16 Münster T., Pahnke J., Di Rosa A., Kim J. T., Martin W., Saedler H., Theißen G.. Floral homeotic genes were recruited from homologous MADS-box genes preexisting in the common ancestor of ferns and seed plants. Proceedings of the National Academy of Sciences of the USA. (1997); 94 2415-2420
- 17 Münster T., Faigl W., Saedler H., Theißen G.. Evolutionary aspects of MADSbox genes in the eusporangiate fern Ophioglossum. . Plant Biology. (2002); 4 474-483
- 18 Nishiyama T., Fujita T., Shin-I. T., Seki M., Nishide H., Uchiyama I., Kamiya A., Carnici P., Hayashizaki Y., Shinozaki K., Kohara Y., Hasebe M.. Comparative genomics of Physcomitrella patens gametophytic transcriptome and Arabidopsis thaliana: implication for land plant evolution. Proceedings of the National Academy of Sciences of the USA. (2003); 100 8007-8012
- 19 Pařenicová L., de Folter S., Kieffer M., Horner D. S., Favalli C., Busscher J., Cook H. E., Ingram R. M., Kater M. M., Davies B., Angenent G. C., Colombo L.. Molecular and phylogenetic analyses of the complete MADS-box transcription factor family in Arabidopsis: New openings to the MADS World. Plant Cell. (2003); 15 1538-1551
- 20 Riechmann J. L., Meyerowitz E. M.. MADS domain proteins in plant development. Journal of Biological Chemistry. (1997); 378 1079-1101
- 21 Sambrook J., Fritsch E. F., Maniatis T.. Molecular Cloning: A Laboratory Manual, 2nd ed. New York, Cold Spring Harbor; Cold Spring Harbor Laboratory Press (1989)
- 22 Schaefer D. G., Zrӱd. J.-P.. Efficient gene targeting in the moss Physcomitrella patens. . Plant Journal. (1997); 11 1195-1206
- 23 Schaefer D. G.. Gene targeting in Physcomitrella patens. . Current Opinion in Plant Biology. (2001); 4 143-150
- 24 Schaefer D. G.. A new moss genetics: targeted mutagenesis in Physcomitrella patens. . Annual Review of Plant Physiology. (2002); 53 477-501
- 25 Schwarz-Sommer Z., Huijser P., Nacken W., Saedler H., Sommer H.. Genetic control of flower development by homeotic genes in Antirrhinum majus. . Science. (1990); 250 931-936
- 26 Schwarz-Sommer Z., Hue I., Huijser P., Flor P. J., Hansen R., Tetens F., Lönnig W. E., Saedler H., Sommer H.. Characterization of the Antirrhinum floral homeotic MADS-box gene deficiens: evidence for DNA binding and autoregulation of its persistent expression throughout flower development. EMBO Journal. (1992); 11 251-263
- 27 Shore P., Sharrocks D.. The MADS-box family of transcription factors. European Journal of Biochemistry. (1995); 229 1-13
- 28 Soltis D. E., Soltis P. S., Albert V. A., Oppenheimer D. G., dePamphilis C. W., Ma H., Frohlich M., Theißen G.. Missing links: the architecture of flower and floral diversification. Trends in Plant Science. (2002); 7 22-31
- 29 Sundström J., Engström P.. Conifer reproductive development involves B-type MADS-box genes with distinct and different activities in male organ primordia. Plant Journal. (2002); 31 161-169
- 30 Svensson M. E., Engström P.. Closely related MADS-box genes in club moss (Lycopodium) show broad expression patterns and are structurally similar to, but phylogenetically distinct from, typical seed plant MADS-box genes. New Phytologist. (2002); 154 439-450
- 35 Tanabe Y., Hasebe M., Sekimoto H., Nishiyama T., Kitani M., Henschel K., Münster T., Theißen G., Nozaki H., Ito M.. Characterization of MADS-box genes in charophycean green algae and its implication for the evolution of MADS-box genes. Proceedings of the National Academy of Sciences of the USA. (2005); 102 2436-2441
- 31 The Arabidopsis Genome Initiative . Analysis of the genome sequence of the flowering plant Arabidopsis thaliana. . Nature. (2000); 408 796-815
- 32 Theißen G., Becker A., Di Rosa A., Kanno A., Kim J. T., Münster T., Winter K.-U., Saedler H.. A short history of MADS-box genes in plants. Plant Molecular Biology. (2000); 42 115-149
- 33 Theißen G., Saedler H.. Floral quartets. Nature. (2001); 409 469-471
- 34 Winter K.-U., Saedler H., Theißen G.. On the origin of class B floral homeotic genes: functional substitution and dominant inhibition in Arabidopsis by expression of an orthologue from the gymnosperm Gnetum. . Plant Journal. (2002); 31 457-475
1 * These authors contributed equally to this work
T. Münster
Abteilung Molekulare Pflanzengenetik
Max-Planck-Institut für Züchtungsforschung
Carl-von-Linné-Weg 10
50829 Köln
Germany
Email: muenster@mpiz-koeln.mpg.de
Guest Editor: R. Reski