Plant Biol (Stuttg) 2005; 7(4): 387-396
DOI: 10.1055/s-2005-865644
Research Paper

Georg Thieme Verlag Stuttgart KG · New York

Genetic Structure in Populations of an Ancient Woodland Sedge, Carex sylvatica Hudson, at a Regional and Local Scale

P. Arens1 , R.-J. Bijlsma2 , W. van't Westende1 , B. van Os2 , M. J. M. Smulders1 , B. Vosman1
  • 1Department of Biodiversity and Breeding, Plant Research International, Wageningen UR, P.O. Box 16, 6700 AA Wageningen, The Netherlands
  • 2Centre for Ecosystem Studies, Alterra, Wageningen UR, P.O. Box 47, 6700 AA Wageningen, The Netherlands
Weitere Informationen

Publikationsverlauf

Received: December 10, 2004

Accepted: April 11, 2005

Publikationsdatum:
18. Juli 2005 (online)

Abstract

Wood sedge (Carex sylvatica) is a well-known ancient woodland species with a long-term persistent seed bank and a caespitose growth habit. All thirteen isolated Carex sylvatica populations in the Dutch Rhine floodplain (including the river branches Waal and IJssel) were mapped in detail and analysed for genetic variation at a large number of AFLP loci and one microsatellite locus. Across all populations, only 40 % of the sampled individuals (n = 216) represented a unique genotype. A high number of the studied patches (spatial clusters of tussocks, 2 - 10 m in diameter) within populations contained only one or a few genotypes. Identical plants (tussocks) were also found 20 - 500 m apart and in one case even 1000 m apart. Observed heterozygosity levels (HO= 0.029) were low, indicating low levels of gene flow, which is in agreement with the selfing nature of other caespitose sedges. Although the number of genotypes in populations is low, these genotypes are genetically very distinct and variation within populations accounted for 55 % of the total variation. The absence of a correlation between genetic and geographic distances among populations, and the scattered distribution of genotypes among patches within woodlands, support our hypothesis of rare establishments and subsequent local dispersal within woodlands in this forest floor species, which may benefit from and partly depend on human land use and forest management activities.

References

  • 1 Arens P., Coops H., Jansen J., Vosman B.. Molecular genetic analysis of Black poplar (Populus nigra L.) along Dutch rivers.  Molecular Ecology. (1998);  7 11-18
  • 2 Barkham J. P.. The effects of coppicing and neglect on the performance of the perennial ground flora. Buckley, G. P., ed. Ecology and Management of Coppice Woodlands. London; Chapman and Hall (1992): 115-146
  • 3 Bennett M. D., Cox A. V., Leitch I. J.. Angiosperm DNA C-values database. http://www.rbgkew.org.uk/cval/database1.html . (1998)
  • 4 Bonn S., Poschlod P.. Ausbreitungsbiologie der Pflanzen Mitteleuropas. Wiesbaden; Quelle and Meyer (1998)
  • 5 Bruederle L. P., Jensen U.. Genetic differentiation of Carex flava and Carex viridula in West Europe (Cyperaceae).  Systematic Botany. (1991);  16 41-49
  • 6 Brunet J., Von Oheimb G.. Migration of vascular plants to secondary woodlands in southern Sweden.  Journal of Ecology. (1998);  86 429-438
  • 7 Escaravage N., Questiau S., Pornon A., Doche B., Taberlet P.. Clonal diversity in a Rhododendron ferrugineum L. (Ericaceae) population inferred from AFLP markers.  Molecular Ecology. (1998);  7 975-982
  • 8 Excoffier L., Smouse P. E., Quattro J. M.. Analysis of molecular variance inferred from metric distances among DNA haplotypes: application to human mitochondrial DNA restriction data.  Genetics. (1995);  131 479-491
  • 9 Ford B. A., Ball P. W., Ritland K.. Allozyme diversity and genetic relationships among North American members of the short-beaked taxa of Carex (Cyperaceae).  Systematic Botany. (1991);  16 116-131
  • 10 Ford B. A., McQueen D. A. R., Naczi R. F. C., Reznicek A. A.. Allozyme variation and genetic relationships among species in the Carex willdenowii complex (Cyperaceae). .  American Journal of Botany. (1998);  85 546-552
  • 11 Fulton T. M., Chunwongse J., Tanksley S. D.. Microprep protocol for extraction of DNA from tomato and other herbaceous plants.  Plant Molecular Biology Reporter. (1995);  13 207-209
  • 12 Hermy M., Honnay O., Firbank L., Grashof-Bokdam C., Lawesson J. E.. An ecological comparison between ancient and other forest plant species of Europe, and the implications for forest conservation.  Biological Conservation. (1999);  91 9-22
  • 13 Hodgson J. G., Grime J. P., Hunt R., Thompson K.. The Electronic Comparative Plant Ecology. London; Chapman and Hall (1995)
  • 14 Jermy A. C., Chater A. O., David R. W.. Sedges of the British Isles. BSBI Handbook No 1. London; BSBI (1982)
  • 35 Mantel N.. The detection of disease clustering and a generalized regression approach.  Cancer Research. (1967);  27 209-220
  • 34 Manly B. F. J.. Randomization, Bootstrap and Monte Carlo Methods in Biology, 2nd edition. New York; Chapman and Hall (1997)
  • 15 Mennema J., Quenéne-Boterenbrood A. J., Plate C. L.. Atlas van de Nederlandse Flora 2. Zeldzame en Vrij Zeldzame Planten. Utrecht; Bohn, Scheltema and Holkema (1985)
  • 16 Miller M. P.. Tools For Population Genetic Analyses 3.1 (TFPGA). A windows program for the analysis of allozyme and molecular population genetic data. http://bioweb.usu.edu/mpmbio/index.htm . (1997)
  • 17 Nordén B., Appelqvist T.. Conceptual problems of ecological continuity and its bioindicators.  Biodiversity and Conservation. (2001);  10 779-791
  • 18 Payne R. W., Lane P. W., Digby P. G. N.. et al. .Genstat 5 Reference Manual, Release 3. Oxford; Oxford University Press (1993)
  • 19 Peterken G. F.. The definition, evaluation and management of ancient woods in Great Britain.  NNA-Berichte. (1994);  7 102-114
  • 20 Piepho H. P., Koch G.. Codominant analysis of banding data from a dominant marker system by normal mixtures.  Genetics. (2000);  155 1459-1468
  • 21 Rackham O.. Trees and Woodland in the British Landscape. London; Dent (1976)
  • 22 Rackham O.. Ancient Woodland, its History, Vegetation and Uses in England. London; Arnold (1980)
  • 23 Ridley H. N.. The Dispersal of Plants throughout the World. Ashford; L. Reeve and Co (1930)
  • 24 Schütz W.. Germination responses of temperate Carex-species to diurnally fluctuating temperatures - a comparative study.  Flora. (1999);  194 21-32
  • 25 Schwabe A.. Zur Wiederbesiedlung von Auenwald-Vegetationskomplexen nach Hochwasser-Ereignissen: Bedeutung der Diasporen-Verdriftung, der generativen und vegetativen Etablierung.  Phytocoenologia. (1991);  20 65-94
  • 26 Sebald O.. Carex L. Sebald, O. et al., ed. Die Farn- und Blütenpflanzen Baden-Württembergs, Bd. 8. Stuttgart; Eugen Ulmer (1998): 98-248
  • 27 Sokal R. R., Sneath P. H. A.. Principles of Numerical Taxonomy. San Francisco; Freeman (1963): 359
  • 28 Van de Ven G. P.. Man-Made Lowlands: History of Water Management and Land Reclamation in the Netherlands. Utrecht; Matrijs (1993)
  • 29 Van Eck H. J., Van der Voort J. R., Draaistra J.. et al. . The inheritance and chromosomal localisation of AFLP markers in a non-inbred potato offspring.  Molecular Breeding. (1995);  1 397-410
  • 30 Vos P., Hogers R., Bleeker M.. et al. . AFLP: a new technique for DNA fingerprinting.  Nucleic Acids Research. (1995);  23 4407-4414
  • 31 Waterway M. J.. Genetic differentiation and hybridization between Carex gynodynama and Carex mendocinensis (Cyperaceae) in California (USA).  American Journal of Botany. (1990);  77 826-838
  • 32 Wulf M.. Plant species as indicators of ancient woodland in northwestern Germany.  Journal of Vegetation Science. (1997);  8 635-642
  • 33 Yeh F. C., Boyle T.. POPGENE VERSION 1.31 Microsoft Window-based freeware for population genetic analysis. http://www.ualberta.ca/∼fyeh/info.htm . (1999)

P. Arens

Department of Biodiversity and Breeding
Plant Research International
Wageningen UR

P.O. Box 16

6700 AA Wageningen

Netherlands

eMail: paul.arens@wur.nl

Editor: F. R. Scarano