Subscribe to RSS
DOI: 10.1055/s-2005-865841
Georg Thieme Verlag Stuttgart KG · New York
Results on Quantitative Trait Loci for Flushing Date in Oaks Can Be Transferred to Different Segregating Progenies
Publication History
Received: March 16, 2005
Accepted: May 24, 2005
Publication Date:
15 September 2005 (online)
Abstract
Flushing date (bud burst) is one of the most important traits for the adaptation to different environments and climates in the temperate zone. Because of their wide geographic distribution, Quercus robur L. and Q. petraea (Matt.) Liebl. are suitable as model plants to study the genetic basis of bud burst. QTLs (Quantitative Trait Loci) with comparatively large effects have been mapped in a former study in a Q. robur × Q. robur full-sib family (French cross). In the present study, we performed a Bulked Segregant Analysis (BSA) in the F1 progeny comprising 144 seedlings derived from a cross between a single Q. robur tree as common seed parent and five different pollen donors both from Q. robur and Q. petraea (Q. robur × Q. spp., Diekholzen crosses). In addition, markers linked to two bud burst QTLs with comparably strong effect in the above-mentioned full-sib family (French cross) were tested for their association with bud burst in the Q. robur × Q. spp. (Diekholzen) progeny. Using three microsatellite markers as anchor points, we could map QTLs on linkage group 7 and on linkage group 2, together explaining 16.2 % of the total phenotypic variance (PVE) in 1999 and 38.1 % in 2003. Out of 10 markers that segregated in both mapping progenies, four markers including the two microsatellite markers, showed a significant effect on bud burst in both materials. At microsatellite loci ssrQpZAG1/5 (linkage group 7) and ssrQpZAG119 (linkage group 2) alleles associated with early (allele 166 bp in ssrQpZAG1/5) and late bud burst (allele 57 bp in ssrQpZAG119) in the Q. robur × Q. robur full-sib family (French cross) showed a highly significant association with the same polarity of the effect in the Q. robur × Q. spp. (Diekholzen) progeny. The usefulness of these markers for marker-assisted selection in full-sib and half-sib families is discussed.
Key words
Quercus robur - Quercus petraea - QTL - flushing date - adaptive trait.
References
- 1 Bacilieri R., Ducousso A., Petit R. J., Kremer A.. Mating system and asymmetric hybridization in a mixed stand of European oaks. Evolution. (1996); 50 900-908
- 2 Barrenche T., Bodenes C., Lexer C., Trontin J.-F., Fluch S., Streiff R., Plomion C., Roussel G., Steinkellner H., Burg K., Favre J.-M., Glössl J., Kremer A.. A genetic linkage map of Quercus robur L. (pedunculate oak) based on RAPD, SCAR, microsatellite, minisatellite, isozyme and 5S rDNA markers. Theoretical and Applied Genetics. (1998); 97 1090-1103
-
3 Beavis W. D..
QTL analysis: power, precision, and accuracy. Paterson, A. H., ed. Molecular Dissection of Complex Traits. Boca Raton; CRC Press (1998) - 4 Bodénès C., Joandet S., Laigret F., Kremer A.. Detection of genomic regions differentiating two closely related oak species Quercus petraea (Matt.) Liebl. and Quercus robur L. Heredity. (1997); 78 433-444
- 5 Bradshaw H., Stettler R.. Molecular genetics of growth and development in Populus. IV. Mapping QTLs with large effects on growth, form, and phenology traits in a forest tree. Genetics. (1995); 139 963-973
- 6 Braeunig M., Fitch R.. WinSTAT: das Statistik-Programm. Berlin; Springer (1998)
- 7 Chen T. H. H., Howe G. T., Bradshaw H. D.. Molecular genetic analysis of dormancy related traits in poplar. Weed Science. (2002); 50 232-240
- 8 Frewen B. E., Chen T. H. H., Howe G. T., Davis J., Rohde A., Boerjan W., Bradshaw H. D.. Quantitative trait loci and candidate gene mapping of bud set and bud flush in Populus. . Genetics. (2000); 154 837-845
- 9 Gailing O., Bachmann K.. QTL analysis reveals different and independent modes of inheritance for diagnostic achene characters in Microseris (Asteraceae). Organisms Diversity and Evolution. (2002); 2 277-288
- 10 Gailing O., Bachmann K.. QTL mapping reveals a two-step model for the evolutionary reduction of inner microsporangia within the asteracean genus Microseris. . Theoretical and Applied Genetics. (2003); 107 893-901
- 11 Gailing O., Hombergen E.-J., Bachmann K.. QTL mapping reveals specific genes for the evolutionary reduction of microsporangia in Microseris (Asteraceae). Plant Biology. (1999); 1 219-225
- 12 Gailing O., Macnair M. R., Bachmann K.. QTL mapping for a trade-off between leaf and bud production in a recombinant inbred population of Microseris douglasii and M. bigelovii (Asteraceae, Lactuceae): a potential preadaptation for the colonization of serpentine soils. Plant Biology. (2004); 6 440-446
- 13 Gailing O., Wachter H., Leinemann L., Hosius B., Finkeldey R., Schmitt H.-P., Heyder J.. Characterisation of different provenances of late flushing pedunculate oak (Quercus robur L.) with chloroplast markers. Allgemeine Forst- und Jagdzeitung. (2003); 174 227-231
- 14 Grattapaglia D., Sederoff R.. Genetic linkage maps of Eucalyptus grandis and Eucalyptus urophylla using a pseudo-testcross mapping strategy and RAPD markers. Genetics. (1994); 137 1121-1137
- 15 Hurme P., Sillanpää M. J., Arjas E., Repo T., Savolainen O.. Genetic basis of climatic adaptation in Scots pine by Bayesian quantitative trait locus analysis. Genetics. (2000); 156 1309-1322
- 16 Jermstad K. D., Bassoni D. L., Wheeler N. C., Anekonda T. S., Aiken S. N., Adams W. T., Neale D. B.. Mapping of quantitative trait loci controlling adaptive traits in coastal Douglas-fir. II. Spring and fall cold-hardiness. Theoretical and Applied Genetics. (2001); 102 1152-1158
- 17 Kearsey M. J., Farquhar A. G. L.. QTL analysis in plants; where are we now?. Heredity. (1998); 80 137-142
- 18 Kleinschmit J., Kleinschmit J. R. G.. Quercus robur - Q. petraea: a critical review of the species concept. Glasnik za Šumske Pokuse. (2000); 37 441-452
- 19 Knott S. A., Elsen J. M., Haley C. S.. Methods for multiple- marker mapping of quantitative trait loci in half-sib populations. Theoretical and Applied Genetics. (1996); 93 71-80
- 20 Kosambi D. D.. The estimation of map distance from recombination values. Ann Eugen. (1944); 12 172-175
- 21 Lander E. S., Green P., Abrahamson J., Barlow A., Daly M. J., Lincoln S. E., Newburg L.. MAPMAKER: an interactive computer package of constructing primary genetic linkage maps of experimental and natural populations. Genomics. (1987); 1 174-181
- 22 Michelmore R. W., Paran I., Kesseli R. V.. Identification of markers linked to disease-resistance genes by bulked segregant analysis: a rapid method to detect markers in specific genomic regions by using segregating populations. Proceedings of the National Academy of Sciences of the USA. (1991); 88 9828-9832
- 23 Mihaljevic R., Utz H. F., Melchinger A. E.. Congruency of quantitative trait loci detected for agronomic traits in testcrosses of five populations of European maize. Crop Science. (2004); 44 114-124
- 24 Mitchell-Olds T.. Genetic constraints on life-history evolution: quantitative-trait loci influencing growth and flowering in Arabidopsis thaliana. . Evolution. (1996); 50 140-145
- 25 Plomion C., Durel C. E., Verhaegen D.. Marker-assisted selection in forest tree breeding programs as illustrated by two examples: Maritime pine and eucalyptus. Annales des Sciences Forestières. (1996); 53 819-848
- 26 Saintagne C., Bodenes C., Barreneche T., Pot D., Plomion C., Kremer A.. Distribution of genomic regions differentiating oak species assessed by QTL detection. Heredity. (2004); 92 20-30
- 27 Scotti-Saintagne C., Bodenes C., Barreneche T., Bertocchi E., Plomion C., Kremer A.. Detection of Quantitative Trait Loci controlling bud burst and height growth in Quercus robur L. Theoretical and Applied Genetics. (2004); 109 1648-1659
- 28 Sourdille P., Snape J. W., Cadalen T., Charmet G., Nakata N., Bernard S., Bernard M.. Detection of QTLs for heading time and photoperiod response in wheat using a doubled-haploid population. Genome. (2000); 43 487-494
- 29 Steinhoff S.. Results of species hybridization with Quercus robur L. and Quercus petraea (Matt) Liebl. Annales des Sciences Forestières. (1993); 50 137s-143s
- 30 Strauss S. H., Lande R., Namkoong G.. Limitations of molecular-marker-aided selection in forest tree breeding. Canadian Journal of Forestry Research. (1992); 22 1050-1061
- 31 Tanksley S. D.. Mapping polygenes. Annual Review of Genetics. (1993); 27 205-233
- 32 Toojiinda T., Baird E., Booth A., Broers L., Hayes P., Powell W., Thomas W., Vivar H., Young G.. Introgression of quantitative trait loci (QTLs) determining stripe rust resistance in barley: an example of marker-assisted line development. Theoretical and Applied Genetics. (1998); 96 123-131
- 33 Ungerer M. C., Halldorsdottir S. S., Modliszewski J. L., MacKay T. F. C., Purugganan M. D.. Quantitative trait loci for inflorescence development in Arabidopsis thaliana. . Genetics. (2002); 160 1133-1151
- 34 Vos P., Hogers R., Bleeker M., Reijans M., van de Lee T., Hornes M., Frijters A., Pot J., Peleman J., Kuiper M., Zabeau M.. AFLP: a new technique for DNA fingerprinting. Nucleic Acids Research. (1995); 23 4407-4414
- 35 Wachter H.. Untersuchungen zum Eichensterben in NRW. Schriftenreihe der Landesforstverwaltung NRW. (2001); 13 1-112
- 36 Weller J. L., Beauchamp N., Kerckhoffs L. H. J., Platten J. D., Reid J. B.. Interaction of phytochromes A and B in the control of de-etiolation and flowering in pea. The Plant Journal. (2001); 26 283-294
O. Gailing
Institute of Forest Genetics and Forest Tree Breeding
Georg August University Göttingen
Büsgenweg 2
37077 Göttingen
Germany
Email: ogailin@gwdg.de
Editor: M. Koornneef