Plant Biol (Stuttg) 2005; 7(5): 533-540
DOI: 10.1055/s-2005-865852
Research Paper

Georg Thieme Verlag Stuttgart KG · New York

Polyembryony and Apomixis in Eriotheca pubescens (Malvaceae - Bombacoideae)

C. Mendes-Rodrigues1 , R. Carmo-Oliveira1 , S. Talavera2 , M. Arista2 , P. L. Ortiz2 , P. E. Oliveira1
  • 1Instituto de Biologia, Universidade Federal de Uberlândia, Caixa Postal 593, Uberlândia-MG, CEP 38400-902, Brazil
  • 2Departamento de Biología Vegetal y Ecologia, Universidad de Sevilla, Apdo. 1095, 41080 Sevilla, Spain
Further Information

Publication History

Received: March 14, 2005

Accepted: May 25, 2005

Publication Date:
15 September 2005 (online)

Abstract

Apomixis and adventitious polyembryony have been reported for several species of Bombacoideae, including Eriotheca pubescens, a tree species of the Neotropical savanna (Cerrado) areas in Brazil. However, the origin of polyembryonic seeds and their importance for the reproduction of the species remained to be shown. Here, we analyzed the early embryology of this species to establish the apomictic origin of extranumerary embryos. We also observed the geographic distribution of polyembryony in E. pubescens, and tested if apomixis was related to the source of pollen (self or cross) and population density. Moreover, we tested if polyembryonic apomictic embryos would develop normally into seedlings. In the observed seed primordia, after a relatively long quiescent period, the zygote developed into a sexual embryo concurrently with adventitious apomictic embryos which developed from nucellus cells. Adventitious embryos develop faster than sexual ones and are morphologically similar, so that 44 days after anthesis it was virtually impossible to distinguish and trace the fate of the sexual embryo. Polyembryony is widely distributed in populations some 400 km distant, and only one strictly monoembryonic individual was observed during the study. The number of embryos per seed varied between fruits and individuals but was significantly higher in seeds from cross-pollinations than from selfs, although fruit and seed set after crosses were much lower than after selfs. Embryo development into seedlings depended on their weight at germination, but polyembryonic seeds germinated and produced up to seven seedlings per seed in greenhouse conditions. Adventitious embryony and apomictic seedlings would explain the mostly clonal populations suggested by molecular studies.

References

  • 1 Allem A. C.. Optimization theory in plant evolution: an overview of long-term evolutionary prospects in the Angiosperms.  Botanical Review. (2003);  69 225-251
  • 2 APG . An update of the Angiosperm Phylogeny Group classification for the orders and families of flowering plants: APG II.  Botanical Journal of the Linnean Society. (2003);  141 399-436
  • 3 Asker S. E., Jerling L.. Apomixis in Plants. Boca Raton; CRC Press (1992)
  • 4 Baker H. G.. Apomixis and polyembryony in Pachira oleaginea (Bombacaceae).  American Journal of Botany. (1960);  47 296-302
  • 5 Banerji I.. Development of female gametophyte and floss in Bombax malabaricum D. C.  Proceedings of the Indian Academy of Sciences B. (1942);  16 205-211
  • 6 Baum D. A., Oginuma K.. A review of chromosome numbers in Bombacaceae with new counts for Adansonia. .  Taxon. (1994);  43 11-20
  • 7 Bayer C., Fay M. F., De-Bruijn A. Y., Savolainen V., Morton C. M., Kubitzki K., Alverson W. S., Chase M. W.. Support for an expanded family concept of Malvaceae within a recircumscribed order Malvales: a combined analysis of plastid atpB and rbcL DNA sequences.  Botanical Journal of the Linnean Society. (1999);  129 267-303
  • 8 Carman J. G.. Asynchorous expression of duplicate genes in angiosperms may cause apomixis, bispory, tetraspory, and polyembryony.  Biological Journal of Linnean Society. (1997);  61 51-94
  • 9 Costa M. E., Sampaio D. S., Paoli A. A. S., Leite S. A. L.. Poliembrionia e aspectos da embriogênese em Tabebuia ochracea (Chamisso) Standley (Bignoniaceae).  Revista Brasileira de Botânica. (2004);  27 395-406
  • 10 Duncan E. J.. Ovule and embryo ontogenesis in Bombacopsis glabra (Pasq.) A. Robyns.  Annals of Botany. (1970);  34 671-676
  • 11 Fåhreus G.. The infection of clover root by nodule bacteria studied by a single glass slide technique.  Journal of General Microbiology. (1957);  16 374-381
  • 12 Gibbs P. E., Bianchi M.. Post-pollination events in species of Chorisia (Bombacaceae) and Tabebuia (Bignoniaceae) with late-acting self-incompatibility.  Botanica Acta. (1993);  106 64-71
  • 13 Gibbs P. E., Senir J., da Cruz N. D.. A proposal to unite the genera Chorisia Kunth and Ceiba Miller (Bombacaceae).  Notes of the Royal Botanic Garden of Edinburgh. (1988);  45 125-136
  • 14 Gibson A. H.. Physical environment and symbiotic nitrogen fixation. I. The effect of root temperature on recently nodulated Trifolium subterraneum L. plants.  Australian Journal of Biological Sciences. (1963);  16 28-42
  • 15 Goldenberg R.. Apomixia como alternativa à reprodução sexuada em Melastomataceae. Cavalcanti, T. B. and Walter, B. M. T., eds. Tópicos Atuais em Botânica. Brasília; SBB/EMBRAPA (2000): 225-230
  • 16 Goldenberg R., Shepherd G. J.. Studies on the reproductive biology of Melastomataceae in “Cerrado” vegetation.  Plant Systematics and Evolution. (1998);  211 13-29
  • 17 Gribel R., Gibbs P. E., Queiroz A. L.. Flowering phenology and pollination Biology of Ceiba pentandra (Bombacaceae) in Central Amazonia.  Journal of Tropical Ecology. (1999);  15 247-263
  • 18 Gupta P., Shivanna K. R., Ram H. Y. M.. Apomixis and polyembryony in the guggul plant, Commiphora wightii. .  Annals of Botany. (1996);  78 67-72
  • 19 Hoffmann W., Franco A. C.. Comparative growth analysis of tropical forest and savanna woody plants using phylogenetically independent contrasts.  Journal of Ecology. (2003);  91 475-484
  • 20 Koltunow A. M.. Apomixis: embryo sacs and embryo formed without meiosis or fertilization in ovules.  Plant Cell. (1993);  5 1425-1437
  • 21 Koltunow A. M., Grossniklaus U.. Apomixis: a developmental perspective.  Annual Review of Plant Biology. (2003);  54 547-574
  • 22 Koltunow A. M., Soltys K., Nito N., Mcclure S.. Anther, ovule, seed, and nucellar embryo development in Citrus sinensis cv. valencia. .  Canadian Journal of Botany. (1995);  73 1567-1582
  • 23 Kraus J., Arduin M.. Manual Básico de Métodos em Morfologia Vegetal. Seropédica-RJ.: EDUR. (1997)
  • 24 Lakshmanan K. K., Ambegaokar K. B.. Polyembryony. Johri, B. M., ed. Embryology of Angiosperms. Berlin; Springer-Verlag (1984): 445-474
  • 25 Lesten N. R., Curtis J. D.. Secretory reservoirs (ducts) of two kinds in giant ragweed (Ambrosia trifida; Asteraceae).  American Journal of Botany. (1988);  75 1313-1323
  • 26 Luque R., Souza H. C., Kraus J. E.. Método de coloração de Roeser (1972) - modificado - Kropp (1972) visando a substituição do azul de astra por azul de alcião 8GS ou 8GX.  Acta Botanica Brasilica. (1996);  10 199-212
  • 27 Martins R. L., Oliveira P. E.. RAPD evidence for apomixis and clonal populations in Eriotheca (Bombacaceae).  Plant Biology. (2003);  5 338-340
  • 28 Mendonça R. C., Felfili J. M., Walter B. M. T., Silva-Jr M. C., Rezende A. V., Filgueiras T. S., Nogueira P. E.. Flora vascular do Cerrado. Sano, S. M. and Almeida, S. P., eds. Cerrado: Ambiente e Flora. Brasília; EMBRAPA CPACerrados (1998): 289-556
  • 29 Mogie M.. The Evolution of Asexual Reproduction in Plants. London; Chapman and Hall (1992)
  • 30 Mondragon J. C.. Verification of the apomictic origin of cactus pear (Opuntia spp. Cactaceae) seedling of open pollinated and crosses from Central Mexico.  Journal of the Professional Association for Cactus Development (Mexico). (2001);  4 49-56
  • 31 Nogler G. A.. Gametophytic apomixis. Johri, B. M., ed. Embryology of Angiosperms. Berlin; Springer-Verlag (1984): 475-518
  • 32 Oliveira P. E., Gibbs P. E.. Reproductive biology of woody plants in a Cerrado community of Central Brazil.  Flora. (2000);  195 311-329
  • 33 Oliveira P. E., Gibbs P. E., Barbosa A. A., Talavera S.. Contrasting breeding systems in two Eriotheca (Bombacaceae) species of the Brazilian Cerrados.  Plant Systematics and Evolution. (1992);  179 207-219
  • 34 Oliveira P. E., Silva J. C. S.. Reproductive biology of two species of Kielmeyera (Guttiferae) in the Cerrados of Central Brazil.  Journal of Tropical Ecology. (1993);  9 67-79
  • 35 Ramsey J., Schemske D. W.. Neopolyploidy in flowering plants.  Annual Review of Ecology and Systematics. (2002);  33 589-639
  • 36 Rao C. V.. A contribution to the embryology of Bombacaceae.  Proceedings of the Indian Academy of Sciences B. (1954);  39 51-75
  • 37 Ressel K., Guilherme F. G., Schiavini I., Oliveira P. E.. Ecologia morfofuncional de plântulas de espécies arbóreas da Estação Ecológica do Panga, Uberlândia, Minas Gerais.  Revista Brasileira de Botânica. (2004);  27 311-326
  • 38 Richards A. J.. Plant Breeding System. London; George Allen and Unwin (1986)
  • 39 Richards A. J.. Apomixis in flowering plants: an overview. Philosophical Transactions of The Royal Society of London.  Biological series. (2003);  358 1085-1093
  • 40 Robyns A.. Essai de monographie du genre Bombax s. L. (Bombacaceae).  Bulletin du Jardin Botanique de L'Etat a Bruxelles. (1963);  33 1-315
  • 41 Salomão A. N., Allem A. C.. Polyembryony in angiospermous trees of the Brazilian Cerrado and Caatinga vegetation.  Acta Botanica Brasilica. (2001);  15 369-378
  • 42 Sass J. E.. Botanical Microthecnique. Iowa; The Iowa State College Press (1951)
  • 43 Thirumalachar M. J., Khan B. A.. Megasporogenesis and endosperm formulation in Eriodendron anfractuosun. .  Proceedings of the Indian Academy of Sciences B. (1941);  14 461-465
  • 44 Xiang C., Roose M. L.. Frequency and characteristics of nucellar and zygotic seedlings in 12 Citrus rootstocks.  Scientia Horticulturae. (1988);  37 47-59
  • 45 Zar J. H.. Biostatistical Analysis. New Jersey; Prentice Hall (1996)

P. E. Oliveira

Instituto de Biologia
Universidade Federal de Uberlândia

Caixa Postal 593

Uberlândia-MG, CEP 38400-902

Brazil

Email: poliveira@ufu.br

Editor: S. S. Renner