References
For examples, see:
1a
Townsend LB.
Chemistry of Nucleosides and Nucleotides
Plenum Press;
New York:
1988.
1b
Nucleosides and Nucleotides as Antitumor and Antiviral Agents
Chu CK.
Baker DC.
Plenum Press;
New York:
1993.
1c
Haraguchi K.
Itoh Y.
Tanaka H.
J. Synth. Org. Chem. Jpn.
2003,
61:
974
1d
Matsuda A.
Sasaki T.
Cancer Sci.
2004,
95:
105
2a
Ruth TL.
Oligonucleotides and their Analogues
IRL Press;
London:
1991.
2b
Giese B.
Imwinkelried P.
Petretta M.
Synlett
1994,
1003 ; and references cited therein
For review see for example:
3a
Junk T.
Catallo WJ.
Chem. Soc. Rev.
1997,
26:
401
3b
Elander N.
Jones JR.
Lu S.-Y.
Stone-Elander S.
Chem. Soc. Rev.
2000,
29:
239
4 Very recently an attractive method for monitoring reaction kinetics using 2H NMR was reported: Durazo A.
Abu-Omar MM.
Chem. Commun.
2002,
66
5a
Gani D.
Young DW.
J. Chem. Soc., Chem. Commun.
1983,
576
5b
Gani D.
Hitchcock PB.
Young DW.
J. Chem. Soc., Chem. Commun.
1983,
898
6a
Kawashima E.
Aoyama Y.
Sekine T.
Miyahara M.
Radwan MF.
Nakamura E.
Kainosho M.
Kyogoku Y.
Ishido Y.
J. Org. Chem.
1995,
60:
6980
6b
Földesi A.
Trifonova A.
Dinya Z.
Chattopadhyaya J.
J. Org. Chem.
2001,
66:
6560
7a
Hill RK.
Ledford ND.
Renbaum LA.
J. Labelled Compd. Radiopharm.
1985,
22:
143
7b
Fujii T.
Saito T.
Kizu K.
Hayashibara H.
Kumazawa Y.
Nakajima S.
Fujisawa T.
Chem. Pharm. Bull.
1991,
39:
301
7c
Sako M.
Hayashi T.
Hirota K.
Maki Y.
Chem. Pharm. Bull.
1992,
40:
1656
8a
Guroff G.
Reifsnyder CA.
Daly J.
Biochem. Biophys. Res. Commun.
1966,
24:
720
8b
Santi DV.
Brewer CF.
J. Am. Chem. Soc.
1968,
90:
6236
8c
Maeda M.
Saneyoshi M.
Kawazoe Y.
Chem. Pharm. Bull.
1971,
19:
1641
8d
Maeda M.
Kawazoe Y.
Tetrahedron Lett.
1975,
19:
1643
8e
Wong JL.
Keck JH.
J. Chem Soc., Chem. Commun.
1975,
125:
8f
Kiritani R.
Asano T.
Fujita S.
Dohmaru T.
Kawanishi T.
J. Labelled Compd. Radiopharm.
1986,
23:
207
8g
Roèek J.
Sváta V.
Leetick L.
Collect. Czech. Chem. Commun.
1985,
50:
1244
9 D2 gas [¥ 31300/10 L of D2 gas (Aldrich 36840-7) in lecture bottle] is purchased as a lecture bottle or a cylinder charged by high-pressure.
10
Sajiki H.
Hattori K.
Aoki F.
Yasunaga K.
Hirota K.
Synlett
2002,
1149
11a
Sajiki H.
Aoki F.
Esaki H.
Maegawa T.
Hirota K.
Org. Lett.
2004,
6:
1485
11b
Maegawa T.
Akashi A.
Esaki H.
Aoki F.
Sajiki H.
Hirota K.
Synlett
2005,
845
Matsubara et al. also reported interesting Pd/C-catalyzed H-D exchange reactions under hydrothermal conditions, see:
12a
Matsubara S.
Yokota Y.
Oshima K.
Chem. Lett.
2004,
33:
294
12b
Yamamoto M.
Yokota Y.
Oshima K.
Matsubara S.
Chem. Commun.
2004,
1714
12c
Yamamoto M.
Oshima K.
Matsubara S.
Org. Lett.
2004,
6:
5015
13
Typical Procedure for Deuteration of Adenosine (Table 1, entry 3): Adenosine (66.8 mg, 0.25 mmol) and 10% Pd/C (6.7 mg, 10 wt% of the substrate, Aldrich) in D2O (1 mL) was stirred at 160 °C in a sealed tube under a H2 atmosphere for 24 h. After cooling, the reaction mixture was filtered using a membrane filter (Millipore Millex®-LG). The filtered catalyst was washed with boiling water (50 mL) and the combined filtrates were concentrated in vacuo to give adenosine-d
2 as a white powder (66.3 mg, 98%). The deuterium content (%) was determined by 1H NMR using 3-trimethylsilyl-1-propanesulfonic acid sodium salt (DSS) as an internal standard and confirmed by mass spectroscopy. [α]D
20 -55 (c 0.38, H2O) [adenosine Lit.16 [α]D
11 -62 (c 0.71, H2O)]. 1H NMR (400 MHz, DMSO-d
6): δ = 8.37 (s, 0.053 H), 8.12 (s, 0.042 H), 7.34-7.30 (br s, 2 H), 5.90 (d, J = 6.4 Hz, 1 H), 5.45-5.41 (m, 2 H), 5.20 (d, J = 4.9 Hz, 1 H), 4.63 (dd, J = 4.9, 6.4 Hz, 1 H), 4.16 (dd, J = 3.4, 4.4 Hz, 1 H), 3.99 (dd, J = 3.4, 3.4 Hz, 1 H), 3.72-3.67 (m, 1 H), 3.60-3.54 (m, 1 H). 13C NMR (100 MHz, DMSO-d
6): δ = 156.2, 152.3 (small peak), 149.0, 139.9 (small peak), 119.3, 87.9, 85.9, 73.4, 70.6, 61.6. 2H NMR (400 MHz, DMSO): δ = 8.02 (br). MS (ES+): m/z (%) = 269 (3) [M + 2].
14
Specific rotations of nucleosides: Table
[1]
, entry 2 [a]D
19 -60 (c 0.38, H2O) {adenosine Lit.16 [α]D
11 -62 (c 0.71, H2O)}; Table
[1]
, entry 3 [α]D
20 -55 (c 0.38, H2O) {adenosine Lit.16 [α]D
11 -62 (c 0.71, H2O)}; Table
[1]
, entry 4 [α]D
20 -19 (c 0.36, CH3OH) {deoxyadenosine [α]D
20 -20 (c 0.36, CH3OH)}; Table
[2]
, entry 1 [α]D
20 -59 (c 0.25, 0.02 N NaOH) {guanosine [α]D
20 -61 (c 0.30, 0.02 N NaOH)}; Table
[2]
, entry 2 [α]D
21 -46 (c 0.34, H2O) {inosine Lit.16 [α]D
18 -49 (c 0.9, H2O)}; Table
[3]
, entry 4 [α]D
21 +5 (c 0.27, H2O) {uridine Lit.16 [α]D
20 +4 (c 2)}; Table
[3]
, entry 7 [α]D
21 +25 (c 0.26, H2O) {cytidine Lit.16 [α]D
25 +31 (c 0.7, H2O)}; 1 [α]D
21 +18 (c 0.74, CH3Cl) {2′,3′,5′-tris-O-TBDMS-uridine [α]D
22 +22 (c 0.83, CH3Cl)}.
15 Although Matsubara et al. recently reported quite interesting H-D exchange reaction of primary alcohols at the α-position using RuCl2(PPh3)2 as a catalyst, we observed no competitive deuterium incorporation into the sugar moieties, see: Takahashi M.
Oshima K.
Matsubara S.
Chem. Lett.
2005,
34:
192
16
The Merck Index 13th Ed.
Merck & Co., Inc.;
Whitehouse Station:
2001.