RSS-Feed abonnieren
DOI: 10.1055/s-2005-868489
Palladium-Catalyzed Base-Selective H-D Exchange Reaction of Nucleosides in Deuterium Oxide
Publikationsverlauf
Publikationsdatum:
27. April 2005 (online)
Abstract
We have developed an efficient and extensive deuterium incorporation method using a heterogeneous Pd/C-D2O-H2 system into the base moiety of nucleosides. The results presented here provide a deuterium gas-free, totally catalytic, and post-synthetic deuterium labeling method in D2O media.
Key words
nucleosides - palladium - reaction - H-D exchange - base-selective
- For examples, see:
-
1a
Townsend LB. Chemistry of Nucleosides and Nucleotides Plenum Press; New York: 1988. -
1b
Nucleosides and Nucleotides as Antitumor and Antiviral Agents
Chu CK.Baker DC. Plenum Press; New York: 1993. -
1c
Haraguchi K.Itoh Y.Tanaka H. J. Synth. Org. Chem. Jpn. 2003, 61: 974 -
1d
Matsuda A.Sasaki T. Cancer Sci. 2004, 95: 105 -
2a
Ruth TL. Oligonucleotides and their Analogues IRL Press; London: 1991. -
2b
Giese B.Imwinkelried P.Petretta M. Synlett 1994, 1003 ; and references cited therein - For review see for example:
-
3a
Junk T.Catallo WJ. Chem. Soc. Rev. 1997, 26: 401 -
3b
Elander N.Jones JR.Lu S.-Y.Stone-Elander S. Chem. Soc. Rev. 2000, 29: 239 - 4 Very recently an attractive method for monitoring reaction kinetics using 2H NMR was reported:
Durazo A.Abu-Omar MM. Chem. Commun. 2002, 66 -
5a
Gani D.Young DW. J. Chem. Soc., Chem. Commun. 1983, 576 -
5b
Gani D.Hitchcock PB.Young DW. J. Chem. Soc., Chem. Commun. 1983, 898 -
6a
Kawashima E.Aoyama Y.Sekine T.Miyahara M.Radwan MF.Nakamura E.Kainosho M.Kyogoku Y.Ishido Y. J. Org. Chem. 1995, 60: 6980 -
6b
Földesi A.Trifonova A.Dinya Z.Chattopadhyaya J. J. Org. Chem. 2001, 66: 6560 -
7a
Hill RK.Ledford ND.Renbaum LA. J. Labelled Compd. Radiopharm. 1985, 22: 143 -
7b
Fujii T.Saito T.Kizu K.Hayashibara H.Kumazawa Y.Nakajima S.Fujisawa T. Chem. Pharm. Bull. 1991, 39: 301 -
7c
Sako M.Hayashi T.Hirota K.Maki Y. Chem. Pharm. Bull. 1992, 40: 1656 -
8a
Guroff G.Reifsnyder CA.Daly J. Biochem. Biophys. Res. Commun. 1966, 24: 720 -
8b
Santi DV.Brewer CF. J. Am. Chem. Soc. 1968, 90: 6236 -
8c
Maeda M.Saneyoshi M.Kawazoe Y. Chem. Pharm. Bull. 1971, 19: 1641 -
8d
Maeda M.Kawazoe Y. Tetrahedron Lett. 1975, 19: 1643 -
8e
Wong JL.Keck JH. J. Chem Soc., Chem. Commun. 1975, 125: -
8f
Kiritani R.Asano T.Fujita S.Dohmaru T.Kawanishi T. J. Labelled Compd. Radiopharm. 1986, 23: 207 -
8g
Roèek J.Sváta V.Leetick L. Collect. Czech. Chem. Commun. 1985, 50: 1244 - 10
Sajiki H.Hattori K.Aoki F.Yasunaga K.Hirota K. Synlett 2002, 1149 -
11a
Sajiki H.Aoki F.Esaki H.Maegawa T.Hirota K. Org. Lett. 2004, 6: 1485 -
11b
Maegawa T.Akashi A.Esaki H.Aoki F.Sajiki H.Hirota K. Synlett 2005, 845 - Matsubara et al. also reported interesting Pd/C-catalyzed H-D exchange reactions under hydrothermal conditions, see:
-
12a
Matsubara S.Yokota Y.Oshima K. Chem. Lett. 2004, 33: 294 -
12b
Yamamoto M.Yokota Y.Oshima K.Matsubara S. Chem. Commun. 2004, 1714 -
12c
Yamamoto M.Oshima K.Matsubara S. Org. Lett. 2004, 6: 5015 - 15 Although Matsubara et al. recently reported quite interesting H-D exchange reaction of primary alcohols at the α-position using RuCl2(PPh3)2 as a catalyst, we observed no competitive deuterium incorporation into the sugar moieties, see:
Takahashi M.Oshima K.Matsubara S. Chem. Lett. 2005, 34: 192 - 16
The Merck Index 13th Ed.
Merck & Co., Inc.;
Whitehouse Station:
2001.
References
D2 gas [¥ 31300/10 L of D2 gas (Aldrich 36840-7) in lecture bottle] is purchased as a lecture bottle or a cylinder charged by high-pressure.
13Typical Procedure for Deuteration of Adenosine (Table 1, entry 3): Adenosine (66.8 mg, 0.25 mmol) and 10% Pd/C (6.7 mg, 10 wt% of the substrate, Aldrich) in D2O (1 mL) was stirred at 160 °C in a sealed tube under a H2 atmosphere for 24 h. After cooling, the reaction mixture was filtered using a membrane filter (Millipore Millex®-LG). The filtered catalyst was washed with boiling water (50 mL) and the combined filtrates were concentrated in vacuo to give adenosine-d 2 as a white powder (66.3 mg, 98%). The deuterium content (%) was determined by 1H NMR using 3-trimethylsilyl-1-propanesulfonic acid sodium salt (DSS) as an internal standard and confirmed by mass spectroscopy. [α]D 20 -55 (c 0.38, H2O) [adenosine Lit.16 [α]D 11 -62 (c 0.71, H2O)]. 1H NMR (400 MHz, DMSO-d 6): δ = 8.37 (s, 0.053 H), 8.12 (s, 0.042 H), 7.34-7.30 (br s, 2 H), 5.90 (d, J = 6.4 Hz, 1 H), 5.45-5.41 (m, 2 H), 5.20 (d, J = 4.9 Hz, 1 H), 4.63 (dd, J = 4.9, 6.4 Hz, 1 H), 4.16 (dd, J = 3.4, 4.4 Hz, 1 H), 3.99 (dd, J = 3.4, 3.4 Hz, 1 H), 3.72-3.67 (m, 1 H), 3.60-3.54 (m, 1 H). 13C NMR (100 MHz, DMSO-d 6): δ = 156.2, 152.3 (small peak), 149.0, 139.9 (small peak), 119.3, 87.9, 85.9, 73.4, 70.6, 61.6. 2H NMR (400 MHz, DMSO): δ = 8.02 (br). MS (ES+): m/z (%) = 269 (3) [M + 2].
14Specific rotations of nucleosides: Table [1] , entry 2 [a]D 19 -60 (c 0.38, H2O) {adenosine Lit.16 [α]D 11 -62 (c 0.71, H2O)}; Table [1] , entry 3 [α]D 20 -55 (c 0.38, H2O) {adenosine Lit.16 [α]D 11 -62 (c 0.71, H2O)}; Table [1] , entry 4 [α]D 20 -19 (c 0.36, CH3OH) {deoxyadenosine [α]D 20 -20 (c 0.36, CH3OH)}; Table [2] , entry 1 [α]D 20 -59 (c 0.25, 0.02 N NaOH) {guanosine [α]D 20 -61 (c 0.30, 0.02 N NaOH)}; Table [2] , entry 2 [α]D 21 -46 (c 0.34, H2O) {inosine Lit.16 [α]D 18 -49 (c 0.9, H2O)}; Table [3] , entry 4 [α]D 21 +5 (c 0.27, H2O) {uridine Lit.16 [α]D 20 +4 (c 2)}; Table [3] , entry 7 [α]D 21 +25 (c 0.26, H2O) {cytidine Lit.16 [α]D 25 +31 (c 0.7, H2O)}; 1 [α]D 21 +18 (c 0.74, CH3Cl) {2′,3′,5′-tris-O-TBDMS-uridine [α]D 22 +22 (c 0.83, CH3Cl)}.