Subscribe to RSS
DOI: 10.1055/s-2005-869836
Stereoselective Cycloaddition on Carbohydrates for the Synthesis of New Bicyclic Oxazolidines Bearing a Quaternary Bridgehead
Publication History
Publication Date:
10 May 2005 (online)

Abstract
A new carbohydrate nitrone intramolecular cycloaddition reaction is described for the enantioselective synthesis of bicyclic oxazolidines. By choice of the precursor, the products possess a chiral quaternary bridgehead aryl substitution. Also described is the diverse synthesis of 6-keto and 6-alkenyl carbohydrates by a general approach. The overall protocol provides versatility through the possibility of introducing diverse reagents at several entry points.
Key words
carbohydrates - cycloaddition - nitrone - oxazolidine - quaternary
- 1
Jiang S.McCullogh KJ.Mkki B.Singh G.Wightman RH. J. Chem. Soc., Perkin Trans. 1 1997, 1805 - 2
Rudge AJ.Collins I.Holmes AB.Baker R. Angew. Chem., Int. Ed. Engl. 1994, 33: 2320 - 3
Panfil I.Chmielewski M. Tetrahedron 1985, 41: 4713 ; and references cited therein - 4
Shing TKM.Elsley DA.Gillhouley JG. J. Chem. Soc., Chem. Commun. 1989, 1280 - 5 For a comprehensive review, see:
Gallos JK.Koumbis AE. Curr. Org. Chem. 2003, 7: 397 - 6 Example of monograph:
Monosaccharides: Their Chemistry and their Roles in Natural Products
Collins P.Ferrier R. John Wiley and Sons Ltd; Chichester: 1998. - 7
Lee HH.Hodgson PG.Bernacki RJ.Korytnyk W.Sharma M. Carbohydr. Res. 1998, 176: 59 -
8a
Hudlicky JM. In Oxidations in Organic Chemistry American Chemical Society Monograph; Washington D. C.: 1990. p.33 -
8b For an alternative method using the Dess-Martin periodinane method:
Liu B.Zhou WS. Tetrahedron Lett. 2003, 44: 4933 - 9
Ratcliffe R.Rodehorst R. J. Org. Chem. 1970, 35: 4000 -
10a
Maryanoff BE.Reitz AB. Chem. Rev. 1989, 89: 863 -
10b
Fitjer L.Quabeck U. Synth. Commun. 1985, 15: 855 -
10c
Leeuwenburgh MA.Overkleeft HS.Van Der Marel GA.Van Boom JH. Synlett 1997, 1263 - 11
Peterson DJ. J. Org. Chem. 1968, 8: 780 - 12
Greene TW.Wuts PGM. In Protective Groups in Organic Synthesis 2nd ed.:Greene TW.Wuts PGM. Wiley Interscience; New York: 1991. p.123-127 - Examples:
-
13a
Harwood LM.Kitchen LC. Tetrahedron Lett. 1993, 34: 6603 -
13b
Bashiardes G.Safir I.Barbot F.Laduranty J. Tetrahedron Lett. 2003, 44: 8417 -
16a
Perreux L.Loupy A. Tetrahedron 2001, 57: 9199 ; and references therein -
16b
Bashiardes G.Safir I.Said Mohamed A.Barbot F.Laduranty J. Org. Lett. 2003, 5: 4915 -
16c
De La Hoz A.Diaz-Ortiz A.Langa F. In Microwaves in Organic SynthesisLoupy A. Wiley-VCH; Germany: 2003.
References
It should be noted that this is a suitable entry point for introducing diversity, since hydroxylamines of multiple variation are very readily accessible.
15
Typical Procedure for the Synthesis of (3a
S
,4
R
,5
S
,6
R
,7
S
,7a
S
)-1-methyl-3a-phenyloctahydrobenzo[
c
]isoxazole-4,5,6,7-tetraol Tetraacetate 12c.
Thermal conditions: in a two-necked, round-bottomed flask equipped with a magnetic stirring bar, a reflux condenser and a thermometer, NaHCO3 (218 mg, 2.6·10-3 mol, 2.6 equiv) was added to a solution of carbohydrate 10 (252 mg, 1.0·10-3 mol) and N-isopropylhydroxylamine hydrochloride (290 mg, 2.6·10-3 mol, 2.6 equiv) in 80% aq EtOH (15 mL). The mixture was stirred under reflux during 48 h. After cooling and removal of the solvent under reduced pressure, Ac2O (0.6 mL), pyridine (1 mL), DMAP (cat.), and CH2Cl2 were added. The mixture was stirred at r.t. during 6 h. The mixture was then washed with 3 × 6 mL of H2O. The solvent was removed under reduced pressure and the resulting oil was purified by flash chromatography on silica gel (EtOAc-CH2Cl2, 20:80, R
f
= 0.36) to provide 12c in 61% yield as a yellowish oil.
1H NMR (CDCl3): δ = 2.16 (s, 12 H, CH
3
-CO-), 2.54 (s, 3 H, H-8), 2.74 (dd, J
7,7
′ = 13.9 Hz, J7-1 = 7.1 Hz, 1 H, H-7), 3.10 (d, J
7
′
,7 = 13.9 Hz, 1 H, H-7′), 3.58-3.60 (m, 1 H, H-1), 5.00-5.60 (m, 4 H, H-2, H-3, H-4, H-5), 7.23-7.39 (m, 5 H, H-10, H-11, H-12, H-13, H-14) ppm.
13C NMR (CDCl3): δ = 20.3, 20.8, 21.0, 21.1 (CH3-CO-), 33.8 (C-7), 47.0 (C-8), 63.1 (C-1), 71.3 (C-2), 71.4, 71.5, 71.6 (C-3, C-4 et C-5), 86.5 (C-6), 126.5 (C-12), 127.6, 127.7 (C-11, C-13, C-10, C-14), 143.4 (C-9), 168.4, 169.2, 170.1, 170.5 (C=O) ppm.
IR: 3023 s (arom. =CH), 2966 m, 2930 w (CHn), 1742 s (C=O), 1538 w, 1493 w, 1448 s (arom. C=C), 1372 s (C-N), 1217 s (C-O), 754 s, 703 s (arom. C-H) cm-1.
Compound 12a Major Conformer:
1H NMR (CDCl3): δ = 1.99, 2.02, 2.04, 2.13 (4 s, 12 H, CH
3
), 2.27 (dd, J
8,8bis = 13.0 Hz, J
8,7a = 10.0 Hz, 1 H, H-8), 3.01 (d, J
8bis,8 = 13.0 Hz, 1 H, H-8bis), 3.60 (dd, J
7a,8 = 10.0 Hz, J
7a,7 = 2.0 Hz, 1 H, H-7a), 4.18 (d, J
3,3bis = 13.4 Hz, 1 H, H-3), 4.21 (d, J
3bis,3 = 13.4 Hz, 1 H, H-3bis), 5.11 (dd, J
7,6 = 8.8 Hz, J
7,7a = 2.0 Hz, 1 H, H-7), 5.31 (d, J
4,5 = 8.6 Hz, 1 H, H-4), 5.40 (dd, J
5,4 = 8.6 Hz, J
5,6 = 1.4 Hz, 1 H, H-5), 5.43 (dd, J
6,7 = 8.8 Hz, J
6,5 = 1.4 Hz, 1 H, H-6), 7.13-7.31 (m, 10 H, H-arom.) ppm.
13C NMR (CDCl3): δ = 20.1, 20.5, 20.9, 21.0 (CH3), 34.6 (C-3), 62.9 (C-8), 63.9 (C-7a), 70.2 (C-7), 73.5, 73.6 (C-5, C-6), 74.1 (C-4), 87.0 (C-3a), 126.1, 128.0, 128.2, 128.6, 129.8 (C-10, C-11, C-12, C-13, C-14, C-16, C-17, C-18, C-19, C-20), 134.3 (C-9), 140.0 (C-15), 168.4, 169.3, 169.7, 170.5 (C=O) ppm.
IR: 3020 m (arom. =CH), 2989 s, 2934 m (CHn), 1741 s (C=O), 1497 m, 1450 m (arom. C=C), 1370 s (C-N), 1218 s (C-O), 755 s, 701 s (arom. C-H) cm-1.
Compound 12a Minor Conformer:
1H NMR (CDCl3): δ = 1.99, 2.02, 2.04, 2.13 (4 s, 12 H, CH
3
), 2.81 (dd, J
8,8bis = 13.8 Hz, J
8,7a = 6.7 Hz, 1 H, H-8), 3.19 (d, J
8bis,8 = 13.8 Hz, 1 H, H-8bis), 3.57 (d, J
3,3bis = 12.9 Hz, 1 H, H-3), 3.86 (dd, J
7a,8 = 6.7 Hz, J
7a,7 = 3.9 Hz, 1 H, H-7a), 3.86-3.96 (m, 2 H, H-6, H-4), 3.91 (d, J
3bis,3 = 12.9 Hz, 1 H, H-3bis), 5.04 (dd, J
5,4 = 4.1 Hz, J
5,6 = 1.3 Hz, 1 H, H-5), 5.17 (dd, J
7,7a = 3.9 Hz, J
7,6 = 3.8 Hz, 1 H, H-7), 7.13-7.31 (m, 10 H, H-arom.) ppm.
13C NMR (CDCl3): δ = 20.1, 20.5, 20.9, 21.0 (CH3), 34.3 (C-3), 62.1 (C-8), 66.2 (C-7a), 71.9 (C-7), 72.4, 72.6 (C-4, C-6), 75.5 (C-5), 88.2 (C-3a), 126.7, 127.7, 127.8, 128.4, 128.9 (C-10, C-11, C-12, C-13, C-14, C-16, C-17, C-18, C-19, C-20), 135.8 (C-9), 142.1 (C-15), 168.4, 169.3, 169.7, 170.5 (C=O) ppm.
IR: 3020 m (arom. =CH), 2989 s, 2934 m (CHn), 1741 s (C=O), 1497 m, 1450 m (arom. C=C), 1370 s (C-N), 1218 s (C-O), 755 s, 701 s (arom. C-H) cm-1.
Compound 12b:
1H NMR (CDCl3): δ = 2.16 (s, 12 H, CH
3
-CO-), 2.54 (s, 3 H, H-8), 2.74 (dd, J
3,3bis = 13.9 Hz, J
3-7a = 7.1 Hz, 1 H, H-3), 3.10 (d, J
3bis,3 = 13.9 Hz, 1 H, H-3bis), 3.58-3.60 (m, 1 H, H-7a), 5.00-5.60 (m, 4 H, H-4, H-5, H-6, H-7), 7.23-7.39 (m, 5 H, H-10, H-11, H-12, H-13, H-14) ppm.
13C NMR (CDCl3): δ = 20.3, 20.8, 21.0, 21.1 (CH3-CO-), 33.8 (C-3), 47.0 (C-8), 63.1 (C-7a), 71.3 (C-7), 71.4, 71.5, 71.6 (C-4, C-5, C-6), 86.5 (C-3a), 126.5 (C-12), 127.6, 127.7 (C-11, C-13, C-10, C-14), 143.4 (C-9), 168.4, 169.2, 170.1, 170.5 (C=O) ppm.
IR: 3023 s (arom. =CH), 2966 m, 2930 w (CHn), 1742 F (C=O), 1538 w, 1493 w, 1448 s (arom. C=C), 1372 s (C-N), 1217 s (C-O), 754 s, 703 s (arom. C-H) cm-1.
Typical procedure for the synthesis of (3a
S
,4
R
,5
S
,6
R
,7
S
,7a
S
)-1-methyl-3a-phenyloctahydrobenzo[c]isoxazole-4,5,6,7-tetraol tetraacetate 12c.
Microwave conditions: in a pyrex test tube (2 × 15), NaHCO3 (218 mg, 2.6·10-3 mol, 2.6 equiv), N-isopropyl-
hydroxylamine hydrochloride (290 mg, 2.6·10-3 mol, 2.6 equiv), carbohydrate 10 (252 mg, 1.0·10-3 mol) and 80% aq EtOH (1 mL) were submitted to microwave irradiations (CEM Discover apparatus. Settings: 70 °C, 100 W) during 80 min. After cooling and the solvent evaporated under reduced pressure, the crude product was acetylated and purified as in Ref. 15.