References
<A NAME="RU07205ST-1A">1a</A>
Beji M.
Sbihi H.
Baklouti A.
Cambon A.
J. Fluorine Chem.
1999,
99:
17
<A NAME="RU07205ST-1B">1b</A>
Goel A.
Mazur SJ.
Fattah RJ.
Hartman TL.
Turpin JA.
Huang M.
Rice WG.
Appella E.
Inman JK.
Bioorg. Med. Chem. Lett.
2002,
12:
767
<A NAME="RU07205ST-2A">2a</A>
Xue M.
Long BH.
Fairchild C.
Johnston K.
Rose WC.
Kadow JF.
Vyas DM.
Chen SH.
Bioorg. Med. Chem. Lett.
2000,
10:
1327
<A NAME="RU07205ST-2B">2b</A>
Hahn HG.
Rhee HK.
Lee CK.
Whang KJ.
Korean J. Med. Chem.
2000,
10:
66
<A NAME="RU07205ST-3">3</A>
Heyns AJ.
Carter GA.
Rothwell K.
Wain RL.
Ann. Appl. Biol.
1960,
57:
33
<A NAME="RU07205ST-4A">4a</A>
The Pesticide Manual
9th ed.:
Worthing CR.
British Crop Protection Council;
London:
1991.
<A NAME="RU07205ST-4B">4b</A>
Breiter WA.
Baker JM.
Koskinen WC.
J. Agric. Food Chem.
1998,
46:
1624
<A NAME="RU07205ST-4C">4c</A>
Lee SJ.
Caboni P.
Tomizawa M.
Casida JE.
J. Agric. Food Chem.
2004,
52:
95
<A NAME="RU07205ST-5A">5a</A>
Chen YS.
Schuphan I.
Casida JE.
J. Agric. Food Chem.
1979,
27:
709
<A NAME="RU07205ST-5B">5b</A>
Sanders HJ.
Chem. Eng. News
1981,
31:
20
<A NAME="RU07205ST-5C">5c</A>
Mizuno T.
Nishiguchi I.
Okushi T.
Hirashima T.
Tetrahedron Lett.
1991,
32:
6867
<A NAME="RU07205ST-5D">5d</A>
Nagao Y.
Abe Y.
Misono T.
Ichizen N.
Shima Y.
Iesaka H.
Furushima M.
Nippon Kagaku Kaishi
1993,
719
<A NAME="RU07205ST-6A">6a</A>
Sonoda N.
Mizuno T.
Murakami S.
Konda K.
Ogawa A.
Ryu I.
Angew. Chem., Int. Ed. Engl.
1989,
28:
452
<A NAME="RU07205ST-6B">6b</A>
Mizuno T.
Nishiguchi I.
Sonoda N.
Tetrahedron
1994,
50:
5669
<A NAME="RU07205ST-6C">6c</A>
Mizuno T.
Daigaku T.
Nishiguchi I.
Tetrahedron Lett.
1995,
36:
1533
<A NAME="RU07205ST-6D">6d</A>
Mizuno T.
Junko T.
Ogawa A.
Tetrahedron
2003,
59:
1327
<A NAME="RU07205ST-6E">6e</A>
Mizuno T.
Iwai T.
Ogawa A.
Ito T.
Tetrahedron
2004,
60:
2869
<A NAME="RU07205ST-7A">7a</A>
Tilles H.
J. Am. Chem. Soc.
1959,
81:
714
<A NAME="RU07205ST-7B">7b</A>
Chen-Hsien W.
Synthesis
1981,
622
<A NAME="RU07205ST-8A">8a</A>
Kwart H.
Evans ER.
J. Org. Chem.
1966,
31:
410
<A NAME="RU07205ST-8B">8b</A>
Hackler RE.
Balko TW.
J. Org. Chem.
1973,
38:
2106
<A NAME="RU07205ST-8C">8c</A>
Sakamoto M.
Yoshiaki M.
Takahashi M.
Fujita T.
Watanabe S.
J. Chem. Soc., Perkin Trans. 1
1995,
373
<A NAME="RU07205ST-8D">8d</A>
Harayama H.
Nagahama T.
Kozera T.
Kimura M.
Fugami K.
Tanaka S.
Tamaru Y.
Bull. Chem. Soc. Jpn.
1997,
70:
445
<A NAME="RU07205ST-8E">8e</A>
Bohme A.
Gais HJ.
Tetrahedron: Asymmetry
1999,
10:
2511
<A NAME="RU07205ST-9">9</A>
Ricci A.
Danieli R.
Pirazzini G.
J. Chem. Soc., Perkin Trans. 1
1977,
1069
<A NAME="RU07205ST-10A">10a</A>
Jones WD.
Reynolds KA.
Sperry CK.
Lachicotte RJ.
Godleski SA.
Valente RR.
Organometallics
2000,
19:
1661
<A NAME="RU07205ST-10B">10b</A>
Jacob J.
Reynolds KA.
Jones WD.
Godleski SA.
Valente RR.
Organometallics
2001,
20:
1028
<A NAME="RU07205ST-11A">11a</A>
Hiskey RG.
Carroll FI.
Smith RF.
Corbett RT.
J. Org. Chem.
1961,
26:
4756
<A NAME="RU07205ST-11B">11b</A>
Weijlard J.
Tishler T.
J. Am. Chem. Soc.
1951,
73:
1497
<A NAME="RU07205ST-12">12</A>
Crosby FS.
Niemann C.
J. Am. Chem. Soc.
1954,
76:
4458
<A NAME="RU07205ST-13">13</A>
Riemschneider R.
J. Am. Chem. Soc.
1956,
78:
844
<A NAME="RU07205ST-14A">14a</A>
Koch P.
Tetrahedron Lett.
1975,
25:
2087
<A NAME="RU07205ST-14B">14b</A>
Nishiyama Y.
Kawamatsu H.
Sonoda N.
J. Org. Chem.
2005,
70:
2551
<A NAME="RU07205ST-15">15</A>
Wynne JH.
Jensen SD.
Snow AW.
J. Org. Chem.
2003,
68:
3733
<A NAME="RU07205ST-16">16</A>
Sonoda N.
Yamamoto G.
Natsukawa K.
Kondo K.
Murai S.
Tetrahedron Lett.
1975,
24:
1969
<A NAME="RU07205ST-17A">17a</A>
Ottmann DG.
Hooks HJ.
Angew Chem., Int. Ed. Engl.
1966,
5:
250
<A NAME="RU07205ST-17B">17b</A>
Akiba KY.
Inamoto N.
J. Chem. Soc., Chem. Commun.
1973,
13
<A NAME="RU07205ST-17C">17c</A>
Yoshida K.
Isobe M.
Yano K.
Nagamatsu K.
Bull. Chem. Soc. Jpn.
1985,
58:
2143
<A NAME="RU07205ST-17D">17d</A>
Kuniyasu H.
Hiraike H.
Morita M.
Tanaka A.
Sugoh K.
Kurosawa H.
J. Org. Chem.
1999,
64:
7305
<A NAME="RU07205ST-17E">17e</A>
Batery RA.
Chiaki YI.
Taylor SD.
Santhakumar V.
Tetrahedron Lett.
1999,
40:
2669
<A NAME="RU07205ST-18">18</A>
Zhang XP.
Lu SW.
Chem. Lett.
2005,
34:
606
<A NAME="RU07205ST-19A">19a</A>
Mei JT.
Lu SW.
Chin. J. Catal.
2002,
23:
1
<A NAME="RU07205ST-19B">19b</A>
Mei JT.
Yang Y.
Xue Y.
Lu SW.
J. Mol. Catal. A: Chem.
2003,
191:
135
<A NAME="RU07205ST-20A">20a</A>
Sonoda N.
Yasuhara T.
Kondo K.
Ikeda T.
Tsutsumi S.
J. Am. Chem. Soc.
1971,
93:
6344
<A NAME="RU07205ST-20B">20b</A>
Ogawa A.
Kambe N.
Murai S.
Sonoda N.
Tetrahedron
1985,
41:
4813
<A NAME="RU07205ST-21">21</A>
Preparation of dithiocarbonic acid S
,
S
′-dibenzyl ester. To a 100 mL stainless steel autoclave, selenium (10 mmol), phenyl-methanethiol (20
mmol), and triethylamine (10 mmol) were added. The reactor was then sealed, flushed
three times with carbon monoxide. Then carbon monoxide was introduced to the autoclave
(0.8 MPa) and the reactor was placed in the oil bath preheated to 60 °C with stirring.
After 10 h, the apparatus was cooled to room temperature and degassed. The pure dithiocarbonic
acid S,S′-dibenzyl ester was obtained by column chromatography (silica gel, petroleum ether)
in 96% yield. Recrystallization from ethanol gave colorless needles; mp 69-70 ° C
(lit.
[22]
mp 45-46 °C); 1H NMR (400 MHz, CDCl3): δ = 7.31-7.21 (m, 10 H), 3.58 (s, 4 H).
<A NAME="RU07205ST-22">22</A>
Lacopo D.
Rita F.
Valeria R.
Synthesis
1980,
375
<A NAME="RU07205ST-23A">23a</A>
Miyata T.
Kondo K.
Hirashima T.
Sonoda N.
Angew. Chem., Int. Ed. Engl.
1980,
19:
1008
<A NAME="RU07205ST-23B">23b</A>
Liu XZ.
Lu SW.
J. Mol. Catal. A: Chem.
2004,
212:
127
<A NAME="RU07205ST-24">24</A>
Preparation of phenyl-thiocarbamic acid S-benzyl ester(2i) by the reaction of aniline with dithiocarbonic acid S
,
S
′-dibenzyl ester. To a 100 mL stainless steel autoclave, dithiocarbonic acid S,S′-dibenzyl ester (5 mmol), aniline (5 mmol) and chloroform (5 mL) were added. The
reactor was then sealed and flushed three times with carbon monoxide. Then carbon
monoxide was introduced to the autoclave (0.8 MPa, approximately 30-35 mmol), and
the reactor was placed in the oil bath preheated to 60 °C with stirring. After 10
h, the apparatus was cooled to room temperature and degassed. The pure phenyl-thiocarbamic
acid S-benzyl ester (2i) was obtained by column chromatography (silica gel, petroleum-chloroform, 1:1) in
86% yield. Recrystallization from chloroform-petroleum ether gave to colorless needles;
mp 97-98 °C (lit.
[25]
mp 96-97 °C); 1H NMR (400 MHz, CDCl3): δ = 7.40-7.08 (m, 11 H), 4.22 (s, 2 H).
<A NAME="RU07205ST-25">25</A>
Werner EA.
J. Chem. Soc.
1890,
57:
303
<A NAME="RU07205ST-26">26</A>
Typical experimental procedure is as follows (Table 1, entry 2): To a 100 mL stainless steel autoclave, selenium (0.5 mmol), nitrobenzene (10 mmol),
propane-1-thiol (10 mmol), and triethylamine (5 mmol) were added. The reactor was
then sealed, flushed three times with carbon monoxide. Then carbon monoxide was introduced
to the autoclave (0.8 MPa, approximately 30-35 mmol), and the reactor was placed in
the oil bath preheated to 60 °C with stirring. After 10 h, the apparatus was cooled
to room temperature and degassed. The crude product was then dissolved in THF and
stirred for 30 min to precipitate selenium. The catalyst was then recovered by filtration.
The filtrate was concentrated. The pure phenyl-thiocarbamic acid S-propyl ester (2b) was obtained either by column chromatography (silica gel, chloroform-petroleum ether,
2:1) in 84% yield or by recrystallization from light petroleum ether in 72% yield
as colorless needles; mp 83-84 °C (lit.
[27]
mp 84 °C); 1H NMR (400 MHz, CDCl3): δ = 7.42-7.07 (m, 6 H), 2.95 (t, J = 8.0 Hz, 2 H), 1.68 (sextet, J = 8.0 Hz, 2 H), 0.99 (t, J = 8.0 Hz, 3 H).
<A NAME="RU07205ST-27">27</A>
Birch RS.
Gowan WS.
Norris P.
J. Chem. Soc.
1925,
127:
904