Subscribe to RSS
DOI: 10.1055/s-2005-869839
A Novel One-Pot Solvent-Free, Triethylamine-Assisted, Selenium-Catalyzed Synthesis of Thiocarbamates from Nitroarenes, Carbon Monoxide, and Thiols
Publication History
Publication Date:
12 May 2005 (online)

Abstract
A novel one-pot solvent-free synthesis of a series of thiocarbamates is reported. Nitroarenes, carbon monoxide, and thiols are the starting materials, with cheap element selenium as catalyst; this method offers a simple access to thiocarbamates mostly in moderate to good yields. The selenium catalyst can be easily recovered and recycled.
Key words
thiocarbamates - carbon monoxide - selenium - thiols - carbonylation - nitroarenes
-
1a
Beji M.Sbihi H.Baklouti A.Cambon A. J. Fluorine Chem. 1999, 99: 17 -
1b
Goel A.Mazur SJ.Fattah RJ.Hartman TL.Turpin JA.Huang M.Rice WG.Appella E.Inman JK. Bioorg. Med. Chem. Lett. 2002, 12: 767 -
2a
Xue M.Long BH.Fairchild C.Johnston K.Rose WC.Kadow JF.Vyas DM.Chen SH. Bioorg. Med. Chem. Lett. 2000, 10: 1327 -
2b
Hahn HG.Rhee HK.Lee CK.Whang KJ. Korean J. Med. Chem. 2000, 10: 66 - 3
Heyns AJ.Carter GA.Rothwell K.Wain RL. Ann. Appl. Biol. 1960, 57: 33 -
4a
The Pesticide Manual
9th ed.:
Worthing CR. British Crop Protection Council; London: 1991. -
4b
Breiter WA.Baker JM.Koskinen WC. J. Agric. Food Chem. 1998, 46: 1624 -
4c
Lee SJ.Caboni P.Tomizawa M.Casida JE. J. Agric. Food Chem. 2004, 52: 95 -
5a
Chen YS.Schuphan I.Casida JE. J. Agric. Food Chem. 1979, 27: 709 -
5b
Sanders HJ. Chem. Eng. News 1981, 31: 20 -
5c
Mizuno T.Nishiguchi I.Okushi T.Hirashima T. Tetrahedron Lett. 1991, 32: 6867 -
5d
Nagao Y.Abe Y.Misono T.Ichizen N.Shima Y.Iesaka H.Furushima M. Nippon Kagaku Kaishi 1993, 719 -
6a
Sonoda N.Mizuno T.Murakami S.Konda K.Ogawa A.Ryu I. Angew. Chem., Int. Ed. Engl. 1989, 28: 452 -
6b
Mizuno T.Nishiguchi I.Sonoda N. Tetrahedron 1994, 50: 5669 -
6c
Mizuno T.Daigaku T.Nishiguchi I. Tetrahedron Lett. 1995, 36: 1533 -
6d
Mizuno T.Junko T.Ogawa A. Tetrahedron 2003, 59: 1327 -
6e
Mizuno T.Iwai T.Ogawa A.Ito T. Tetrahedron 2004, 60: 2869 -
7a
Tilles H. J. Am. Chem. Soc. 1959, 81: 714 -
7b
Chen-Hsien W. Synthesis 1981, 622 -
8a
Kwart H.Evans ER. J. Org. Chem. 1966, 31: 410 -
8b
Hackler RE.Balko TW. J. Org. Chem. 1973, 38: 2106 -
8c
Sakamoto M.Yoshiaki M.Takahashi M.Fujita T.Watanabe S. J. Chem. Soc., Perkin Trans. 1 1995, 373 -
8d
Harayama H.Nagahama T.Kozera T.Kimura M.Fugami K.Tanaka S.Tamaru Y. Bull. Chem. Soc. Jpn. 1997, 70: 445 -
8e
Bohme A.Gais HJ. Tetrahedron: Asymmetry 1999, 10: 2511 - 9
Ricci A.Danieli R.Pirazzini G. J. Chem. Soc., Perkin Trans. 1 1977, 1069 -
10a
Jones WD.Reynolds KA.Sperry CK.Lachicotte RJ.Godleski SA.Valente RR. Organometallics 2000, 19: 1661 -
10b
Jacob J.Reynolds KA.Jones WD.Godleski SA.Valente RR. Organometallics 2001, 20: 1028 -
11a
Hiskey RG.Carroll FI.Smith RF.Corbett RT. J. Org. Chem. 1961, 26: 4756 -
11b
Weijlard J.Tishler T. J. Am. Chem. Soc. 1951, 73: 1497 - 12
Crosby FS.Niemann C. J. Am. Chem. Soc. 1954, 76: 4458 - 13
Riemschneider R. J. Am. Chem. Soc. 1956, 78: 844 -
14a
Koch P. Tetrahedron Lett. 1975, 25: 2087 -
14b
Nishiyama Y.Kawamatsu H.Sonoda N. J. Org. Chem. 2005, 70: 2551 - 15
Wynne JH.Jensen SD.Snow AW. J. Org. Chem. 2003, 68: 3733 - 16
Sonoda N.Yamamoto G.Natsukawa K.Kondo K.Murai S. Tetrahedron Lett. 1975, 24: 1969 -
17a
Ottmann DG.Hooks HJ. Angew Chem., Int. Ed. Engl. 1966, 5: 250 -
17b
Akiba KY.Inamoto N. J. Chem. Soc., Chem. Commun. 1973, 13 -
17c
Yoshida K.Isobe M.Yano K.Nagamatsu K. Bull. Chem. Soc. Jpn. 1985, 58: 2143 -
17d
Kuniyasu H.Hiraike H.Morita M.Tanaka A.Sugoh K.Kurosawa H. J. Org. Chem. 1999, 64: 7305 -
17e
Batery RA.Chiaki YI.Taylor SD.Santhakumar V. Tetrahedron Lett. 1999, 40: 2669 - 18
Zhang XP.Lu SW. Chem. Lett. 2005, 34: 606 -
19a
Mei JT.Lu SW. Chin. J. Catal. 2002, 23: 1 -
19b
Mei JT.Yang Y.Xue Y.Lu SW. J. Mol. Catal. A: Chem. 2003, 191: 135 -
20a
Sonoda N.Yasuhara T.Kondo K.Ikeda T.Tsutsumi S. J. Am. Chem. Soc. 1971, 93: 6344 -
20b
Ogawa A.Kambe N.Murai S.Sonoda N. Tetrahedron 1985, 41: 4813 - 22
Lacopo D.Rita F.Valeria R. Synthesis 1980, 375 -
23a
Miyata T.Kondo K.Hirashima T.Sonoda N. Angew. Chem., Int. Ed. Engl. 1980, 19: 1008 -
23b
Liu XZ.Lu SW. J. Mol. Catal. A: Chem. 2004, 212: 127 - 25
Werner EA. J. Chem. Soc. 1890, 57: 303 - 27
Birch RS.Gowan WS.Norris P. J. Chem. Soc. 1925, 127: 904
References
Preparation of dithiocarbonic acid S , S ′-dibenzyl ester. To a 100 mL stainless steel autoclave, selenium (10 mmol), phenyl-methanethiol (20 mmol), and triethylamine (10 mmol) were added. The reactor was then sealed, flushed three times with carbon monoxide. Then carbon monoxide was introduced to the autoclave (0.8 MPa) and the reactor was placed in the oil bath preheated to 60 °C with stirring. After 10 h, the apparatus was cooled to room temperature and degassed. The pure dithiocarbonic acid S,S′-dibenzyl ester was obtained by column chromatography (silica gel, petroleum ether) in 96% yield. Recrystallization from ethanol gave colorless needles; mp 69-70 ° C (lit. [22] mp 45-46 °C); 1H NMR (400 MHz, CDCl3): δ = 7.31-7.21 (m, 10 H), 3.58 (s, 4 H).
24Preparation of phenyl-thiocarbamic acid S-benzyl ester(2i) by the reaction of aniline with dithiocarbonic acid S , S ′-dibenzyl ester. To a 100 mL stainless steel autoclave, dithiocarbonic acid S,S′-dibenzyl ester (5 mmol), aniline (5 mmol) and chloroform (5 mL) were added. The reactor was then sealed and flushed three times with carbon monoxide. Then carbon monoxide was introduced to the autoclave (0.8 MPa, approximately 30-35 mmol), and the reactor was placed in the oil bath preheated to 60 °C with stirring. After 10 h, the apparatus was cooled to room temperature and degassed. The pure phenyl-thiocarbamic acid S-benzyl ester (2i) was obtained by column chromatography (silica gel, petroleum-chloroform, 1:1) in 86% yield. Recrystallization from chloroform-petroleum ether gave to colorless needles; mp 97-98 °C (lit. [25] mp 96-97 °C); 1H NMR (400 MHz, CDCl3): δ = 7.40-7.08 (m, 11 H), 4.22 (s, 2 H).
26Typical experimental procedure is as follows (Table 1, entry 2): To a 100 mL stainless steel autoclave, selenium (0.5 mmol), nitrobenzene (10 mmol), propane-1-thiol (10 mmol), and triethylamine (5 mmol) were added. The reactor was then sealed, flushed three times with carbon monoxide. Then carbon monoxide was introduced to the autoclave (0.8 MPa, approximately 30-35 mmol), and the reactor was placed in the oil bath preheated to 60 °C with stirring. After 10 h, the apparatus was cooled to room temperature and degassed. The crude product was then dissolved in THF and stirred for 30 min to precipitate selenium. The catalyst was then recovered by filtration. The filtrate was concentrated. The pure phenyl-thiocarbamic acid S-propyl ester (2b) was obtained either by column chromatography (silica gel, chloroform-petroleum ether, 2:1) in 84% yield or by recrystallization from light petroleum ether in 72% yield as colorless needles; mp 83-84 °C (lit. [27] mp 84 °C); 1H NMR (400 MHz, CDCl3): δ = 7.42-7.07 (m, 6 H), 2.95 (t, J = 8.0 Hz, 2 H), 1.68 (sextet, J = 8.0 Hz, 2 H), 0.99 (t, J = 8.0 Hz, 3 H).