Subscribe to RSS
DOI: 10.1055/s-2005-870015
Synthesis of 2-Substituted 4H-3,1-Benzoxazin-4-ones by Thermally Induced Cyclization of N-(2-Benzyloxycarbonyl)phenyl Ketenimines; Oxygen-to-Carbon Migration of a Benzyl Group
Publication History
Publication Date:
13 July 2005 (online)
Abstract
N-(2-Benzyloxycarbonyl)phenyl ketenimines undergo a thermally induced cyclization to give 2-substituted 4H-3,1-benzoxazin-4-ones. These processes involve the formation of a new carbon-oxygen bond and the migration of the benzyl group from the oxygen atom of the benzyloxy unit at the ester function to the terminal carbon atom of the ketenimine fragment.
Key words
azides - ketenimines - cyclizations - rearrangements - benzoxazinones
- 1
Mayama S.Tani T. Tetrahedron Lett. 1981, 22: 2103 -
2a
Bouillant M.-L.Favre-Bonvin J.Ricci P. Tetrahedron Lett. 1983, 24: 51 -
2b
Ponchet M.Martín-Tanguy J.Marais A.Poupet A. Phytochemistry 1984, 23: 1901 - 3
Niemann GJ.Liem J.van der Kerk-van Hoof A.Niessen WMA. Phytochemistry 1992, 31: 3761 - 4
Teshima T.Griffin JC.Powers JC. J. Biol. Chem. 1982, 257: 5085 -
5a
Alazard R.Béchet J.-J.Dupaix A.Yon J. Biochim. Biophys. Acta 1973, 309: 379 -
5b
Hedstrom L.Moorman AR.Dobbs J.Abeles RH. Biochemistry 1984, 23: 1753 -
6a
Stein RL.Strimpler AM.Viscarello BR.Wildonger RA.Mauger RC.Trainor DA. Biochemistry 1987, 26: 4126 -
6b
Krantz A.Spencer RW.Tam TF.Liak TJ.Copp LJ.Thomas EM. J. Med. Chem. 1990, 33: 464 - 7
Jarvest RL.Parratt MJ.Debouck CM.Gorniak JG.Jennings LJ.Serafinowska HT.Strickler JE. Bioorg. Med. Chem. Lett. 1996, 6: 2463 - 8
Gilmore JL.Hays SJ.Caprathe BW.Lee C.Emmerling MR.Michael W.Jaén JC. Bioorg. Med. Chem. Lett. 1996, 6: 679 - 9
Fenton G.Newton CG.Wyman BM.Bagge P.Dron DI.Riddell D.Jones GD. J. Med. Chem. 1989, 32: 265 -
10a
Clémence F.Martret OL.Collard J. J. Heterocycl. Chem. 1984, 21: 1345 -
10b
Ibrahim SS.Abdel-Halim AM.Gabr Y.El-Edfawy S.Abdel-Rahman RM. J. Chem. Res., Synop. 1997, 154 -
11a For a review on the synthesis and reactivity of 4H-3,1-benzoxazin-4-ones bearing a carbon substituent at the 2 position see:
Coppola GM. J. Heterocycl. Chem. 1999, 36: 563 -
11b For a review on the synthesis and reactivity of 4H-3,1-benzoxazin-4-ones bearing oxy, mercapto or amino functionalities at the 2-position see:
Coppola GM. J. Heterocycl. Chem. 2000, 37: 1369 - For examples of preparations of 2-substituted 4H-3,1-benzoxazin-4-ones from anthranilic acids, see:
-
12a
Bain DI.Smalley RK. J. Chem. Soc. C 1968, 1593 -
12b
Bergman J.Bergman S. J. Org. Chem. 1985, 50: 1246 -
12c
Hauteville M.Ponchet M.Ricci P.Favre-Bonvin J. J. Heterocycl. Chem 1988, 25: 715 -
12d
Parkanyi C.Yuan HL.Stromberg BHE.Evenzahav A. J. Heterocycl. Chem. 1992, 29: 749 -
12e
Atkinson RS.Coogan MP.Cornell CL. J. Chem. Soc., Perkin Trans. 1 1995, 157 -
12f
Khajavi MS.Montazari N.Hosseini SSS. J. Chem. Res., Synop. 1997, 286 - For examples of preparations of 2-substituted 4H-3,1-benzoxazin-4-ones from N-acylanthranilic acids see:
-
13a
Zentmyer DT.Wagner EC. J. Org. Chem. 1948, 13: 967 -
13b
Rabilloud G.Sillion B. J. Heterocycl. Chem. 1980, 17: 1065 -
13c
Conley RA.Barton DL.Stefanick SM.Lam MM.Lindabery GC.Kasulanis CF.Cesco-Cancian S.Currey S.Fabian AC.Levine SD. J. Heterocycl. Chem. 1995, 32: 761 -
13d
Marsham PR.Jackman AL.Barker AJ.Boyle FT.Pegg SJ.Wardleworth JM.Kimbell R.O’Connor BM.Calvert AH.Hughes LR. J. Med. Chem. 1995, 38: 994 -
13e
Mohapatra DK.Datta A. Synlett 1996, 1129 - For examples of preparations of 2-substituted 4H-3,1-benzoxazin-4-ones from isatoic anhydride see:
-
14a
Minami T.Ogata M.Hirao I.Tanaka M.Agawa T. Synthesis 1982, 231 -
14b
Tsubota M.Hamashima M. Heterocycles 1984, 21: 706 - 15
Larock RC.Fellows CA. J. Org. Chem. 1980, 45: 363 - 16
Cacchi S.Fabrizi G.Marinelli F. Synlett 1996, 997 - 17
Larksarp C.Alper H. Org. Lett. 1999, 1: 1619 -
18a
Richman RJ.Hassner A. J. Org. Chem. 1968, 33: 2548 -
18b
Bristow THC.Foster HE.Hooper M. J. Chem. Soc., Chem. Commun. 1974, 677 -
18c
Adam J.-M.Winkler T. Helv. Chim. Acta 1984, 67: 2186 -
19a
Smalley RK.Suschitzky H.Tanner EM. Tetrahedron Lett. 1966, 29: 3465 -
19b
Crabtree HE.Smalley RK.Suschitzky H. J. Chem. Soc. C 1968, 2730 -
19c
Archer JG.Barker AJ.Smalley RK. J. Chem. Soc., Perkin Trans. 1 1973, 1169 - 20
Reddy GS.Reddy KK. Indian J. Chem., Sect. B 1978, 16: 1109 - 21
Molina P.Conesa C.Velasco MD. Tetrahedron Lett. 1993, 34: 175 -
22a
Alajarín M.Vidal A.Tovar F. Targets Heterocycl. Syst. 2000, 4: 293 -
22b
Barker MW.McHenry WE. In The Chemistry of Ketenes, Allenes, and Related Compounds part 2:Patai S. Wiley Interscience; Chichester: 1980. p.701 -
22c
Dondoni A. Heterocycles 1980, 14: 1547 -
23a
Molina P.Vidal A.Barquero I. Synthesis 1996, 1199 -
23b
Molina P.Vidal A.Tovar F. Synthesis 1997, 963 ; and references cited therein -
24a
Alajarín M.Molina P.Vidal A. Tetrahedron Lett. 1996, 37: 8945 -
24b
Alajarín M.Vidal A.Tovar F.Arrieta A.Lecea B.Cossío FP. Chem. Eur. J. 1999, 5: 1106 -
24c
Alajarín M.Vidal A.Tovar F.Ramírez de Arellano MC. Tetrahedron: Asymmetry 2004, 15: 489 ; and references cited therein - 25
Alajarín M.Vidal A.Ortín M.-M.Tovar F. Synthesis 2002, 2393 - 26
Alajarín M.Vidal A.Tovar F.Conesa C. Tetrahedron Lett. 1999, 40: 6127 - 27
Alajarín M.Vidal A.Tovar F. Tetrahedron Lett. 2000, 41: 7029 -
28a
Alajarín M.Vidal A.Ortín M.-M. Org. Biomol. Chem. 2003, 1: 4282 -
28b
Alajarín M.Vidal A.Ortín M.-M.Bautista D. New J. Chem. 2004, 28: 570 -
28c
Alajarín M.Vidal A.Ortín M.-M.Bautista D. Synlett 2004, 991 -
32a
Pinhey JT.Schaffner K. Aust. J. Chem. 1968, 21: 2265 -
32b
Arnold RT.Kulenovic ST. J. Org. Chem. 1980, 45: 891 -
32c
Reinaud O.Capdevielle P.Maumy M. Tetrahedron 1987, 43: 4167 -
32d
Andreichikov YS.Gein VL.Ivanenko OI.Brigadnova EV.Maslivets AN. J. Org. Chem. USSR (Engl. Transl.) 1988, 24: 1007 -
32e
Burger K.Gaa K.Geith K.Schierlinger C. Synthesis 1989, 850 -
32f
West FG.Naidu BN.Tester RW. J. Org. Chem. 1994, 59: 6892 -
32g
Desai VN.Saha NN.Dhavale DD. J. Chem. Soc., Perkin Trans. 1 2000, 147 -
32h
Burger K.Fuchs A.Hennig L.Helmreich B.Greif D. Monatsh. Chem. 2001, 132: 929 -
32i
Karche NP.Jachak SM.Dhavale DD. J. Org. Chem. 2001, 66: 6323 - 33 2-Azidobenzoyl chloride (1a) and 2-azido-5-chlorobenzoyl chloride (1b) were both prepared following the experimental procedure described for 1a:
Porter TC.Smalley RK.Teguiche M.Purwono B. Synthesis 1997, 773 - 34
Taylor EC.McKillop A.Hawks GH. Org. Synth. 1973, 52: 36 - 35
Pracejus H.Wallura G. J. Prakt. Chem. 1962, 19: 33
References
Ketenimines 5 and 7 remained unaltered when heated in boiling toluene or boiling ortho-xylene.
30In the thermal treatment of the N-(2-benzyloxycarbo-nyl)phenyl ketenimines 5 small amounts of the corres-ponding 4H-3,1-benzoxazin-4-ones 9 (Figure
[3]
) were always formed (8-13%).
Probably, compounds 9 resulted from the hydrolysis of the ketenimine function in the N-(2-benzyloxycarbonyl)phenyl ketenimines 5 to yield the corresponding amides, followed by intramolecular nucleophilic displacement of the benzyloxy group from the ester group by the carbonyl oxygen of the amide function. We tried very hard to exclude water from the reaction mixtures, but probably we did not succeed as the results were invariable, and small amounts of benzoxazinones 9 were always formed.
Compounds 9a (R1 = H) and 9b (R1 = Cl) could not be separated from the 4H-3,1-benzoxazin-4-ones 6c [R1 = H; R2 = Ph; Ar = 4-MeOC6H4] and 6f [R1 = Cl; R2 = Ph; Ar = 4-MeOC6H3], respectively.
CCDC 264507 contains the supplementary crystallographic data for 6g. The data can be obtained free of charge via www.ccdc.cam.ac.uk/conts/retrieving.html (or from the CCDC, 12 Union Road, Cambridge CB2 1EZ, UK; e-mail:deposit@ccdc.cam.ac.uk).