RSS-Feed abonnieren
DOI: 10.1055/s-2005-871537
Regioselective Nucleophilic Opening of Azetidinium Ions
Publikationsverlauf
Publikationsdatum:
14. Juni 2005 (online)

Abstract
Azetidinium ions bearing different substitution patterns were reacted with nitrogen nucleophiles (sodium azide and benzylamine) and oxygenated nucleophiles (sodium acetate and alkoxides). High regioselectivity of nucleophilic opening was observed in both cases: the nucleophile reacting on the unsubstituted carbon in the case of α-substituted azetidinium salts and on the carbon bearing an ester or cyano moiety in the case of α,α′-substituted azetidinium salts.
Key words
azetidiniums - nitrogen - heterocycles - ring opening - asymmetric synthesis
- 1
Hu EX. Tetrahedron 2004, 60: 2701 - For recent examples, see:
-
2a
Mulvihill MJ.Cesario C.Smith V.Beck P.Nigro A. J. Org. Chem. 2004, 69: 5124 -
2b
Chuang T.-H.Sharpless KB. Org. Lett. 2000, 2: 3555 ; and references cited therein -
2c
Rowlands GJ.Barnes WK. Tetrahedron Lett. 2004, 45: 5347 -
2d
Periasamy M.Seenivasaperumal M.Dharma Rao V. Tetrahedron: Asymmetry 2004, 15: 3847 -
3a
Gaertner VR. Tetrahedron Lett. 1967, 4: 343 -
3b
Gaertner VR. J. Org. Chem. 1968, 33: 523 - 4
Leonard NJ.Durand DA. J. Org. Chem. 1968, 33: 1322 - 5
Cospito G.Illuminati G.Lilloci C.Petride H. J. Org. Chem. 1981, 46: 2944 -
6a
O’Brien P.Phillips DW.Towers TD. Tetrahedron Lett. 2002, 43: 7333 -
6b
Concellón JM.Riego E.Bernard PL. Org. Lett. 2002, 4: 1303 -
6c
Concellón JM.Bernard PL.Pérez-Andrés JA. Tetrahedron Lett. 2000, 41: 1231 -
6d
Higgins RH.Faircloth WJ.Baughman RG.Eaton QL. J. Org. Chem. 1994, 59: 2172 -
6e
Guidicelli M.-B.Picq D.Anker D. Tetrahedron Lett. 1992, 48: 6033 -
6f
Kane MP.Szmuszkovicz J. J. Org. Chem. 1981, 46: 3728 -
6g
Heller M.Bernstein S. J. Org. Chem. 1971, 36: 1386 -
6h
Jeziorna A.Heliński J.Krawiecka B. Synthesis 2003, 288 -
6i
Jeziorna-Bakalarz A.Heliński J.Krawiecka B. J. Chem. Soc., Perkin Trans. 1 2001, 1086 -
6j
Heliński J.Skrzypczynski Z.Michalski J. Tetrahedron Lett. 1995, 36: 9201 -
6k
Jeziorna A.Heliński J.Krawiecka B. Tetrahedron Lett. 2003, 44: 3239 -
6l
Bakalarz A.Heliński J.Krawiecka B.Michalski J.Potrzebowski MJ. Tetrahedron 1999, 55: 12211 -
6m
Sudo A.Iitaka Y.Endo T. J. Polym. Sci., Part A: Polym. Chem. 2002, 40: 1912 -
7a
Agami C.Couty F.Evano G. Tetrahedron: Asymmetry 2002, 13: 297 -
7b
Carlin-Sinclair A.Couty F.Rabasso N. Synlett 2003, 726 -
7c
Agami C.Couty F.Rabasso N. Tetrahedron Lett. 2002, 43: 4633 -
8a
Couty F.Durrat F.Prim D. Tetrahedron Lett. 2003, 44: 5209 -
8b
Couty F.Evano G.Prim D.Marrot J. Eur. J. Org. Chem. 2004, 3893 -
8c
Couty F.Durrat F.Evano G.Prim D. Tetrahedron Lett. 2004, 45: 7525 - 9
Baldwin JE.Thomas RC.Kruse LI.Silberman L. J. Org. Chem. 1977, 42: 3846
References
All new compounds were characterized by 1H NMR, 13C NMR spectroscopy, mass spectra analysis, and for most relevant compounds, by elementary analysis. Typical procedure for the preparation of an azetidinium salt is given below:
To a solution of the azetidine (2.0 mmol) in CH2Cl2 (10 mL), cooled at 0 °C, was added dropwise methyltrifluoromethanesulfonate (0.45 mL, 4 mmol). The reaction mixture was stirred for 1 h at r.t., and the solvent was evaporated under reduced pressure. The crude salt was washed thoroughly with small quantities of dry Et2O, and dried under vacuum.
Compound 2: yield 99%; [α] -34 (c 0.5, acetone); mp 116 °C. MS (ESI Pos): m/z = 263.2 [M - Otf]+. 1H NMR [300 MHz, (CD3)2CO]: δ = 7.89-7.82 (m, 2 H, Ph), 7.67-7.42 (m, 8 H, Ph), 6.34 (d, J = 9.3 Hz, 1 H, H-2), 5.31-5.14 (m, 4 H, H-3, H-4, H-6, H-6′), 4.91-4.81 (m, 1 H, H-4′), 3.70 (s, 3 H, H-5) ppm. 13C NMR [75 MHz, (CD3)2CO]: δ = 133.9 (C
ipso
Ph), 133.1, 131.9, 130.5, 129.9, 129.8, 128.4 (CH Ph), 128.3 (C
ipso
Ph), 112.3 (CN), 69.3, 69.2 (C-4, C-6), 65.3 (C-2), 46.9 (C-5), 39.6 (C-3) ppm. Anal. Calcd for C19H19F3N2O3S: C, 55.33; H, 4.64; N, 6.79. Found: C, 55.23; H, 4.66; N, 6.74.
Typical procedure for the reaction of an azetidinium salt with sodium azide is given below: To a solution of azetidinium triflate (2.0 mmol) in DMF (10 mL) was added sodium azide (650 mg, 10.0 mmol) and the suspension was stirred overnight at r.t. Partition between Et2O and H2O was followed by usual work-up. The crude residue was examined by NMR, and the major compound was purified by flash chromatography.
Compound 11: purified by flash chromatography (Et2O-cyclohexane, 10:90, 20:80, 40:60); yield 93%; clear oil; R
f
= 0.61 (Et2O-petroleum ether, 3:7); [α] -90 (c 0.75, CH2Cl2). MS (IC NH3 Pos): m/z = 353 [M + H]+. 1H NMR [300 MHz, (CD3)2CO]: δ = 7.38-7.19 (m, 10 H, Ph), 4.67 (d, J = 4.2 Hz, 1 H, H-2), 4.17 (q, J = 7.1 Hz, 2 H, H-7), 3.66 (d, J = 13.1 Hz, 1 H, H-6), 3.54-3.47 (m, 2 H, H-3, H-6′), 3.01 (t, J = 11.9 Hz, 1 H, H-4), 2.47 (dd, J = 4.2, 12.3 Hz, 1 H, H-4′), 2.28 (s, 3 H, H-5), 1.22 (t, J = 7.1 Hz, 3 H, H-8) ppm. 13C NMR [75 MHz, (CD3)2CO]: δ = 170.2 (C-1), 138.9, 138.1 (C
ipso
Ph), 129.2, 128.9, 128.5, 128.4, 127.6, 127.3 (CH Ph), 64.3 (C-2), 62.9 (C-6), 61.7 (C-7), 59.3 (C-4), 45.2 (C-3), 42.5 (C-5), 14.2 (C-8) ppm. Anal. Calcd for C20H24N4O2: C, 68.16; H, 6.86; N, 15.90. Found: C, 68.03; H, 6.91; N, 15.80.