Synlett 2005(12): 1853-1856  
DOI: 10.1055/s-2005-871561
LETTER
© Georg Thieme Verlag Stuttgart · New York

Regio- and Diastereoselective Synthesis of a Primary β-Azidoalcohol via Stereoselective Epoxidation of a Highly Functionalised di-o,o′-Substituted Styrene: Toward a New Total Synthesis of (-)-Quinocarcin

Uwe Schneider, Xavier Pannecoucke*, Jean-Charles Quirion*
IRCOF, LHO, UMR CNRS 6014, Université et INSA de Rouen, Rue Lucien Tesnière, 76131 Mont-Saint-Aignan, France
Fax: +33(2)35522962; e-Mail: xavier.pannecoucke@insa-rouen.fr;
Further Information

Publication History

Received 21 April 2005
Publication Date:
22 June 2005 (online)

Abstract

Diastereoselective epoxidation of a highly functionalised di-o,o′-substituted styrene combined with subsequent regioselective epoxide ring-opening afforded the corresponding primary β-azidoalcohol, which is the required key intermediate for a new total synthesis approach toward (-)-quinocarcin and various unnatural d-ring modified analogues.

    References

  • 1a Tomita F. Takahashi K. Shimizu K. J. Antibiot.  1983,  36:  463 
  • 1b Tomita F. Takahashi K. Shimizu K. J. Antibiot.  1983,  36:  468 
  • 2a Inaba S. Shimoyama M. Cancer Res.  1988,  48:  6029 
  • 2b Kanamaru R. Konishi Y. Ishioka C. Kakuta H. Sato T. Ishikawa A. Asamura M. Wakui A. Cancer Chemother. Pharmacol.  1988,  22:  197 
  • 2c Fujimoto K. Oka T. Morimoto M. Cancer Res.  1987,  47:  1516 
  • 2d Chiang C.-d. Kanzawa F. Matsushima Y. Nakano H. Nakagawa K. Takahashi H. Terada M. Morinaga S. Tsuchiya R. Sasaki Y. Saijo N. J. Pharmacobio.-Dyn.  1987,  10:  431 
  • 2e Jett JR. Saijo N. Hong W.-S. Sasaki Y. Takahashi H. Nakano H. Nakagawa K. Sakurai M. Suemasu K. Tesada M. Invest. New Drugs  1987,  5:  155 
  • For mechanistic discussions concerning the biological activity of (-)-quinocarcin:
  • 3a Williams RM. Glinka T. Flanagan ME. Gallegos R. Coffman H. Pei D. J. Am. Chem. Soc.  1992,  114:  733 
  • 3b Hill CG. Wunz TP. Remers WA. J. Comput.-Aided Mol. Des.  1988,  2:  91 
  • 4a Katoh T. Kirihara M. Yoshino T. Tamura O. Ikeuchi F. Nakatani K. Matsuda F. Yamada K. Gomi K. Ashizawa T. Terashima S. Tetrahedron  1994,  50:  6259 
  • 4b Katoh T. Kirihara M. Yoshino T. Terashima S. Tetrahedron Lett.  1993,  34:  5747 
  • 5a Koepler O. Laschat S. Baro A. Fischer P. Miehlich B. Hotfilder M. le Viseur C. Eur. J. Org. Chem.  2004,  3611 
  • 5b Herberich B. Scott JD. Williams RM. Bioorg. Med. Chem.  2000,  8:  523 
  • 5c Monsees A. Laschat S. Hotfilder M. Wolff J. Bergander K. Terfloth L. Fröhlich R. Bioorg. Med. Chem. Lett.  1997,  7:  2945 
  • 6a Garner P. Ho WB. Shin H. J. Am. Chem. Soc.  1993,  115:  10742 
  • 6b Garner P. Ho WB. Shin H. J. Am. Chem. Soc.  1992,  114:  2767 
  • 7a Katoh T. Kirihara M. Nagata Y. Kobayashi Y. Arai K. Minami J. Terashima S. Tetrahedron  1994,  50:  6239 
  • 7b Katoh T. Kirihara M. Nagata Y. Kobayashi Y. Arai K. Minami J. Terashima S. Tetrahedron Lett.  1993,  34:  5747 
  • 8 Schneider U. Pannecoucke X. Quirion J.-C. Synlett  2002,  1669 
  • 9a Li G. Lenington R. Willis S. Kim SH. J. Chem. Soc., Perkin Trans. 1  1998,  1753 
  • 9b Reddy KL. Sharpless KB. J. Am. Chem. Soc.  1998,  120:  1207 
  • 9c Li G. Angert HH. Sharpless KB. Angew. Chem., Int. Ed. Engl.  1996,  35:  2813 
  • 10a O’Brien P. Osborne SA. Parker DD. Tetrahedron Lett.  1998,  39:  4099 
  • 10b O’Brien P. Osborne SA. Parker DD. J. Chem. Soc., Perkin Trans. 1  1998,  2519 
  • 11a Harnisch J. Szeimies G. Chem. Ber.  1979,  112:  3914 
  • 11b Cavender CJ. Shiner VJ. J. Org. Chem.  1972,  37:  3567 
  • 12a Kolb HC. VanNieuwenhze MS. Sharpless KB. Chem. Rev.  1994,  94:  2483 
  • 12b Crispino GA. Jeong K.-S. Kolb HC. Wang Z.-M. Xu D. Sharpless KB. J. Org. Chem.  1993,  58:  3785 
  • 12c Sharpless KB. Amberg W. Bennami YL. Crispino GA. Hartung J. Jeong K.-S. Kwong H.-L. Morikawa K. Wang Z.-M. Xu D. Zhang X.-L. J. Org. Chem.  1992,  57:  2768 
  • 13a Johnson RA. Sharpless KB. Catalytic Asymmetric Synthesis   Ojima I. VCH; New York: 1993.  Chap. 4.4.
  • 13b Kolb HC. Sharpless KB. Tetrahedron Lett.  1992,  48:  10515 
  • 13c Zhou B. Edmondson S. Padron J. Danishefsky SJ. Tetrahedron Lett.  2000,  41:  2039 
  • 14a Pedragosa-Moreau S. Archelas A. Furstoss R. J. Org. Chem.  1993,  58:  5533 
  • 14b Chen X.-J. Archelas A. Furstoss R. J. Org. Chem.  1993,  58:  5528 
  • 14c Barili PL. Berti G. Mastrorilli E. Tetrahedron  1993,  49:  6263 
  • 14d Sinha SC. Keinan E. Reymond JL. J. Am. Chem. Soc.  1993,  115:  4893 
  • 14e Jacobsen EN. Acc. Chem. Res.  2000,  33:  421 
  • 15a Jacobsen EN. Comprehensive Organometallic Chemistry II   Vol. 12:  Wilkinson G. Stone FGA. Abel EW. Hegedus LS. Pergamon; New York: 1995.  Chap. 11.1.
  • 15b Jacobsen EN. Catalytic Asymmetric Synthesis   Ojima I. VCH; New York: 1993.  Chap. 4.2.
  • 16a Palucki M. McCormick GJ. Jacobsen EN. Tetrahedron Lett.  1995,  36:  5457 
  • 16b Palucki M. Pospisil PJ. Zhang W. Jacobsen EN. J. Am. Chem. Soc.  1994,  116:  9333 
  • 17 Brandes BD. Jacobsen EN. Tetrahedron: Asymmetry  1997,  8:  3927 
18

Synthesis of Epoxide 9.
MCPBA (104 mg, 0.6 mmol) was added by portion over a period of 2 min to a -78 °C stirred solution of styrene 5b (86 mg, 0.3 mmol), NMO (176 mg, 1.5 mmol) and Jacobsen’s catalyst (R,R)-8 (20 mg, 0.03 mmol) in CH2Cl2 (1 mL). The reaction was vigourously stirred during 2 h at -78 °C. Then a solution of DMS (-78 °C, 186 mg, 3 mmol) in CH2Cl2 (1 mL) was added dropwise and the reaction mixture was warmed to r.t. The mixture was then washed with brine (3 × 30 mL) and the aqueous layers were extracted with 30 mL of CH2Cl2. The organic layers were combined and dried over Na2SO4. After removal of the solvents, the residue was chromatographed over silica gel (eluent: cyclohexane-EtOAc, 95:5 to 75:25) to afford epoxide 9 (de 82%; major isomer: 89 mg, 0.21 mmol; minor isomer: 9 mg, 0.02 mmol) as a colourless oil. Major diastereomer : [α]D 20 -48.1 (c 1.0, C6H6). 1H NMR (CDCl3): δ = 2.24-2.40 (dd, J = 5.3, 13.6 Hz 1 H, CH2 Bn), 2.74 (dd, J = 2.9, 5.9 Hz, 1 H, CH2-O-CH), 2.95-3.15 (m, 1 H, NTroc-CH2-CH-C=Oketone), 3.24 (dd, J = 4.2, 5.9 Hz, 1 H, CH2-O-CH), 3.35 (dd, J = 3.5, 13.6 Hz, 1 H, CH2 Bn), 3.62-3.79 (m, 4 H, NTroc-CH2-CH-C=Oketone, NTroc-CH2-C=Oketone), 3.72 (s, 3 H, O-CH3), 3.86 (dd, J = 2.9, 4.2 Hz, 1 H, CH2-O-CH), 4.79 (s, 2 H, CH2 Troc), 7.19-7.60 (m, 3 H, 3 × CHAr). 13C NMR (CDCl3): δ = 32.2 (CH2 Bn), 48.1 (NTroc-CH2-CH-C=Oketone), 50.5 (NTroc-CH2-CH-C=Oketone), 51.2 (CH2-O-CH), 51.7 (CH2-O-CH), 52.1 (NTroc-CH2-C=Oketone), 55.9 (O-CH3), 75.1 (CH2 Troc), 95.1 (CCl3 Troc), 128.6 (CHAr), 130.1 (CHAr), 130.9 (CHAr), 134.1 (CAr), 135.6 (CAr), 138.0 (CAr), 152.9 (C=OTroc), 210.1 (C=Oketone). IR (film): 3053, 3028, 2854, 1745, 1694, 1609, 1497, 1255, 1132, 909, 804, 790, 686 cm-1.

19

Synthesis of β-Azidoalcohol 4a.
A mixture of enantiopure styrene oxide 9 (211 mg, 0.5 mmol), NaN3 (65 mg, 1.0 mmol) and NH4Cl (67 mg, 1.25 mmol) in EtOH (1 mL)-H2O (0.25 mL) was refluxed during 24 h. The reaction mixture was cooled to r.t., H2O (4 mL) was added. The aqueous layer was then extracted with CH2Cl2 (3 × 5 mL). The combined organic layers were dried over Na2SO4 and concentrated under reduced pressure. The residue was chromatographed over silica gel (eluent: cyclohexane-EtOAc, 90:10 to 50:50) to afford β-azidoalcohol 4a (de 85%; major isomer: 118.5mg, 0.26 mmol; minor isomer: 9.5 mg, 0.02 mmol) as a pale yellow oil. Major diastereomer: [α]D 20 +47.9 (c 1.0, C6H6). 1H NMR (CDCl3): δ = 2.15 (s, 1 H, CH2-OH), 2.21-2.40 (dd, J = 5.2, 13.7 Hz, 1 H, CH2 Bn), 2.90-3.06 (m, 1 H, NTroc-CH2-CH-C=Oketone), 3.26 (dd, J = 3.5, 13.7 Hz, 1 H, CH2 Bn), 3.70-4.12 (m, 6 H, NTroc-CH2-CH-C=Oketone, NTroc-CH2-C=Oketone, CH2-OH), 3.80 (s, 3 H, O-CH3), 4.81 (s, 2 H, CH2 Troc), 4.95 (t, J = 6.3 Hz, 1 H, CH-N3), 7.20-7.51 (m, 3 H, 3 × CHAr). 13C NMR (CDCl3): δ = 32.2 (CH2 Bn), 47.9 (NTroc-CH2-CH-C=Oketone), 50.5 (NTroc-CH2-CH-C=Oketone), 52.2 (NTroc-CH2-C=Oketone), 56.0 (O-CH3), 63.8 (CH-N3), 66.3 (CH2-OH), 75.0 (CH2 Troc), 95.2 (CCl3 Troc), 128.6 (CHAr), 129.8 (CHAr), 130.9 (CHAr), 134.1 (CAr), 135.6 (CAr), 137.7 (CAr), 153.0 (C=OTroc), 209.8 (C=Oketone). IR (film): 3396, 3030, 2946, 2859, 2097, 1737, 1693, 1606, 1499, 1354, 1082, 803, 690 cm-1. Anal. Calcd for C17H19Cl3N4O5: C, 43.84; H, 4.11; N, 12.03. Found: C, 44.10; H, 3.93; N, 11.85.