Subscribe to RSS
DOI: 10.1055/s-2005-871561
Regio- and Diastereoselective Synthesis of a Primary β-Azidoalcohol via Stereoselective Epoxidation of a Highly Functionalised di-o,o′-Substituted Styrene: Toward a New Total Synthesis of (-)-Quinocarcin
Publication History
Publication Date:
22 June 2005 (online)
Abstract
Diastereoselective epoxidation of a highly functionalised di-o,o′-substituted styrene combined with subsequent regioselective epoxide ring-opening afforded the corresponding primary β-azidoalcohol, which is the required key intermediate for a new total synthesis approach toward (-)-quinocarcin and various unnatural d-ring modified analogues.
Key words
asymmetric synthesis - epoxidations - azides - regioselectivity - natural products
-
1a
Tomita F.Takahashi K.Shimizu K. J. Antibiot. 1983, 36: 463 -
1b
Tomita F.Takahashi K.Shimizu K. J. Antibiot. 1983, 36: 468 -
2a
Inaba S.Shimoyama M. Cancer Res. 1988, 48: 6029 -
2b
Kanamaru R.Konishi Y.Ishioka C.Kakuta H.Sato T.Ishikawa A.Asamura M.Wakui A. Cancer Chemother. Pharmacol. 1988, 22: 197 -
2c
Fujimoto K.Oka T.Morimoto M. Cancer Res. 1987, 47: 1516 -
2d
Chiang C.-d.Kanzawa F.Matsushima Y.Nakano H.Nakagawa K.Takahashi H.Terada M.Morinaga S.Tsuchiya R.Sasaki Y.Saijo N. J. Pharmacobio.-Dyn. 1987, 10: 431 -
2e
Jett JR.Saijo N.Hong W.-S.Sasaki Y.Takahashi H.Nakano H.Nakagawa K.Sakurai M.Suemasu K.Tesada M. Invest. New Drugs 1987, 5: 155 - For mechanistic discussions concerning the biological activity of (-)-quinocarcin:
-
3a
Williams RM.Glinka T.Flanagan ME.Gallegos R.Coffman H.Pei D. J. Am. Chem. Soc. 1992, 114: 733 -
3b
Hill CG.Wunz TP.Remers WA. J. Comput.-Aided Mol. Des. 1988, 2: 91 -
4a
Katoh T.Kirihara M.Yoshino T.Tamura O.Ikeuchi F.Nakatani K.Matsuda F.Yamada K.Gomi K.Ashizawa T.Terashima S. Tetrahedron 1994, 50: 6259 -
4b
Katoh T.Kirihara M.Yoshino T.Terashima S. Tetrahedron Lett. 1993, 34: 5747 -
5a
Koepler O.Laschat S.Baro A.Fischer P.Miehlich B.Hotfilder M.le Viseur C. Eur. J. Org. Chem. 2004, 3611 -
5b
Herberich B.Scott JD.Williams RM. Bioorg. Med. Chem. 2000, 8: 523 -
5c
Monsees A.Laschat S.Hotfilder M.Wolff J.Bergander K.Terfloth L.Fröhlich R. Bioorg. Med. Chem. Lett. 1997, 7: 2945 -
6a
Garner P.Ho WB.Shin H. J. Am. Chem. Soc. 1993, 115: 10742 -
6b
Garner P.Ho WB.Shin H. J. Am. Chem. Soc. 1992, 114: 2767 -
7a
Katoh T.Kirihara M.Nagata Y.Kobayashi Y.Arai K.Minami J.Terashima S. Tetrahedron 1994, 50: 6239 -
7b
Katoh T.Kirihara M.Nagata Y.Kobayashi Y.Arai K.Minami J.Terashima S. Tetrahedron Lett. 1993, 34: 5747 - 8
Schneider U.Pannecoucke X.Quirion J.-C. Synlett 2002, 1669 -
9a
Li G.Lenington R.Willis S.Kim SH. J. Chem. Soc., Perkin Trans. 1 1998, 1753 -
9b
Reddy KL.Sharpless KB. J. Am. Chem. Soc. 1998, 120: 1207 -
9c
Li G.Angert HH.Sharpless KB. Angew. Chem., Int. Ed. Engl. 1996, 35: 2813 -
10a
O’Brien P.Osborne SA.Parker DD. Tetrahedron Lett. 1998, 39: 4099 -
10b
O’Brien P.Osborne SA.Parker DD. J. Chem. Soc., Perkin Trans. 1 1998, 2519 -
11a
Harnisch J.Szeimies G. Chem. Ber. 1979, 112: 3914 -
11b
Cavender CJ.Shiner VJ. J. Org. Chem. 1972, 37: 3567 -
12a
Kolb HC.VanNieuwenhze MS.Sharpless KB. Chem. Rev. 1994, 94: 2483 -
12b
Crispino GA.Jeong K.-S.Kolb HC.Wang Z.-M.Xu D.Sharpless KB. J. Org. Chem. 1993, 58: 3785 -
12c
Sharpless KB.Amberg W.Bennami YL.Crispino GA.Hartung J.Jeong K.-S.Kwong H.-L.Morikawa K.Wang Z.-M.Xu D.Zhang X.-L. J. Org. Chem. 1992, 57: 2768 -
13a
Johnson RA.Sharpless KB. Catalytic Asymmetric SynthesisOjima I. VCH; New York: 1993. Chap. 4.4. -
13b
Kolb HC.Sharpless KB. Tetrahedron Lett. 1992, 48: 10515 -
13c
Zhou B.Edmondson S.Padron J.Danishefsky SJ. Tetrahedron Lett. 2000, 41: 2039 -
14a
Pedragosa-Moreau S.Archelas A.Furstoss R. J. Org. Chem. 1993, 58: 5533 -
14b
Chen X.-J.Archelas A.Furstoss R. J. Org. Chem. 1993, 58: 5528 -
14c
Barili PL.Berti G.Mastrorilli E. Tetrahedron 1993, 49: 6263 -
14d
Sinha SC.Keinan E.Reymond JL. J. Am. Chem. Soc. 1993, 115: 4893 -
14e
Jacobsen EN. Acc. Chem. Res. 2000, 33: 421 -
15a
Jacobsen EN. Comprehensive Organometallic Chemistry II Vol. 12:Wilkinson G.Stone FGA.Abel EW.Hegedus LS. Pergamon; New York: 1995. Chap. 11.1. -
15b
Jacobsen EN. Catalytic Asymmetric SynthesisOjima I. VCH; New York: 1993. Chap. 4.2. -
16a
Palucki M.McCormick GJ.Jacobsen EN. Tetrahedron Lett. 1995, 36: 5457 -
16b
Palucki M.Pospisil PJ.Zhang W.Jacobsen EN. J. Am. Chem. Soc. 1994, 116: 9333 - 17
Brandes BD.Jacobsen EN. Tetrahedron: Asymmetry 1997, 8: 3927
References
Synthesis of Epoxide 9.
MCPBA (104 mg, 0.6 mmol) was added by portion over a period of 2 min to a -78 °C stirred solution of styrene 5b (86 mg, 0.3 mmol), NMO (176 mg, 1.5 mmol) and Jacobsen’s catalyst (R,R)-8 (20 mg, 0.03 mmol) in CH2Cl2 (1 mL). The reaction was vigourously stirred during 2 h at -78 °C. Then a solution of DMS (-78 °C, 186 mg, 3 mmol) in CH2Cl2 (1 mL) was added dropwise and the reaction mixture was warmed to r.t. The mixture was then washed with brine (3 × 30 mL) and the aqueous layers were extracted with 30 mL of CH2Cl2. The organic layers were combined and dried over Na2SO4. After removal of the solvents, the residue was chromatographed over silica gel (eluent: cyclohexane-EtOAc, 95:5 to 75:25) to afford epoxide 9 (de 82%; major isomer: 89 mg, 0.21 mmol; minor isomer: 9 mg, 0.02 mmol) as a colourless oil. Major diastereomer : [α]D
20 -48.1 (c 1.0, C6H6). 1H NMR (CDCl3): δ = 2.24-2.40 (dd, J = 5.3, 13.6 Hz 1 H, CH2
Bn), 2.74 (dd, J = 2.9, 5.9 Hz, 1 H, CH2-O-CH), 2.95-3.15 (m, 1 H, NTroc-CH2-CH-C=Oketone), 3.24 (dd, J = 4.2, 5.9 Hz, 1 H, CH2-O-CH), 3.35 (dd, J = 3.5, 13.6 Hz, 1 H, CH2
Bn), 3.62-3.79 (m, 4 H, NTroc-CH2-CH-C=Oketone, NTroc-CH2-C=Oketone), 3.72 (s, 3 H, O-CH3), 3.86 (dd, J = 2.9, 4.2 Hz, 1 H, CH2-O-CH), 4.79 (s, 2 H, CH2
Troc), 7.19-7.60 (m, 3 H, 3 × CHAr). 13C NMR (CDCl3): δ = 32.2 (CH2
Bn), 48.1 (NTroc-CH2-CH-C=Oketone), 50.5 (NTroc-CH2-CH-C=Oketone), 51.2 (CH2-O-CH), 51.7 (CH2-O-CH), 52.1 (NTroc-CH2-C=Oketone), 55.9 (O-CH3), 75.1 (CH2
Troc), 95.1 (CCl3
Troc), 128.6 (CHAr), 130.1 (CHAr), 130.9 (CHAr), 134.1 (CAr), 135.6 (CAr), 138.0 (CAr), 152.9 (C=OTroc), 210.1 (C=Oketone). IR (film): 3053, 3028, 2854, 1745, 1694, 1609, 1497, 1255, 1132, 909, 804, 790, 686 cm-1.
Synthesis of β-Azidoalcohol 4a.
A mixture of enantiopure styrene oxide 9 (211 mg, 0.5 mmol), NaN3 (65 mg, 1.0 mmol) and NH4Cl (67 mg, 1.25 mmol) in EtOH (1 mL)-H2O (0.25 mL) was refluxed during 24 h. The reaction mixture was cooled to r.t., H2O (4 mL) was added. The aqueous layer was then extracted with CH2Cl2 (3 × 5 mL). The combined organic layers were dried over Na2SO4 and concentrated under reduced pressure. The residue was chromatographed over silica gel (eluent: cyclohexane-EtOAc, 90:10 to 50:50) to afford β-azidoalcohol 4a (de 85%; major isomer: 118.5mg, 0.26 mmol; minor isomer: 9.5 mg, 0.02 mmol) as a pale yellow oil. Major diastereomer: [α]D
20 +47.9 (c 1.0, C6H6). 1H NMR (CDCl3): δ = 2.15 (s, 1 H, CH2-OH), 2.21-2.40 (dd, J = 5.2, 13.7 Hz, 1 H, CH2
Bn), 2.90-3.06 (m, 1 H, NTroc-CH2-CH-C=Oketone), 3.26 (dd, J = 3.5, 13.7 Hz, 1 H, CH2
Bn), 3.70-4.12 (m, 6 H, NTroc-CH2-CH-C=Oketone, NTroc-CH2-C=Oketone, CH2-OH), 3.80 (s, 3 H, O-CH3), 4.81 (s, 2 H, CH2
Troc), 4.95 (t, J = 6.3 Hz, 1 H, CH-N3), 7.20-7.51 (m, 3 H, 3 × CHAr). 13C NMR (CDCl3): δ = 32.2 (CH2
Bn), 47.9 (NTroc-CH2-CH-C=Oketone), 50.5 (NTroc-CH2-CH-C=Oketone), 52.2 (NTroc-CH2-C=Oketone), 56.0 (O-CH3), 63.8 (CH-N3), 66.3 (CH2-OH), 75.0 (CH2
Troc), 95.2 (CCl3
Troc), 128.6 (CHAr), 129.8 (CHAr), 130.9 (CHAr), 134.1 (CAr), 135.6 (CAr), 137.7 (CAr), 153.0 (C=OTroc), 209.8 (C=Oketone). IR (film): 3396, 3030, 2946, 2859, 2097, 1737, 1693, 1606, 1499, 1354, 1082, 803, 690 cm-1. Anal. Calcd for C17H19Cl3N4O5: C, 43.84; H, 4.11; N, 12.03. Found: C, 44.10; H, 3.93; N, 11.85.