Synlett 2005(12): 1930-1932  
DOI: 10.1055/s-2005-871580
LETTER
© Georg Thieme Verlag Stuttgart · New York

Convenient and Efficient Approach to Di- and Trideoxyribonucleotide N3′→P5′ Phosphoramidates

Xu Tanga,b, Cheng Huanga, Hua Fu*a, Yufen Zhaoa,b
a Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, Ministry of Education, Department of Chemistry, Tsinghua University, Beijing 100084, P. R. China
b Department of Chemistry, Xiamen University, Xiamen, Fujian 361005, P. R. China
Fax: +86(10)62781695; e-Mail: fuhua@mail.tsinghua.edu.cn;
Further Information

Publication History

Received 22 April 2005
Publication Date:
07 July 2005 (online)

Abstract

Arbuzov reaction of phenyl phosphorodichloridite with an equivalent of allyl alcohol and tert-butyl alcohol produced ­phenyl allyl H-phosphonate and the subsequent ester-exchange with various nucleosides produced nucleoside allyl H-phosphonates. Antherton-Todd reaction of the nucleoside allyl H-phosphonates with 3′-amino-3′-deoxythymidine yielded dideoxyribonucleotide N3′→P5′ phosphoramidates, and the repetition of this procedure provided trideoxyribonucleotide N3′→P5′ phosphoramidates. The method can be used for the synthesis of oligodeoxyribonucleotide N3′→P5′ phosphoramidates without any protection for all nucleosides.

    References

  • 1 Gryaznov SM. Skórski T. Cucco C. Nieborowska-Skórska M. Chin CY. Lloyd D. Chen J.-K. Koziólkiewicz M. Calabretta B. Nucleic Acids Res.  1996,  24:  1508 
  • 2 Riordan ML. Martin JC. Nature (London)  1991,  350:  442 
  • 3 Gryaznov SM. Lloyd DH. Chen J.-K. Schultz RG. DeDionisio LA. Ratmeyer L. Wilson WD. Proc. Natl. Acad. Sci. U.S.A.  1995,  92:  5798 
  • 4 Giovannangeli C. Diviacco S. Labrousse V. Gryaznov S. Charneau P. Helene C. Proc. Natl. Acad. Sci. U.S.A.  1997,  94:  79 
  • 5 Gryaznov SM. Letsinger RL. Nucleic Acids Res.  1992,  20:  3403 
  • 6 Rigl CT. Lloyd DH. Tsou DS. Gryaznov SM. Wilson WD. Biochemistry  1997,  36:  650 
  • 7 Escude C. Giovannangeli C. Sun JS. Lloyd DH. Chen JK. Gryaznov SM. Garestier T. Helene C. Proc. Natl. Acad. Sci. U.S.A.  1996,  93:  4365 
  • 8 Mungall WS. Greene GL. Heavner GA. Letsinger RL. J. Org. Chem.  1975,  40:  1659 
  • 9 Maag H. Schmidt B. Rose SJ. Tetrahedron Lett.  1994,  35:  6449 
  • 10 Chen J.-K. Schultz RG. Lloyd DH. Gryaznov SM. Nucleic Acids Res.  1995,  23:  2661 
  • 11 Gryaznov S. Chen J.-K. J. Am. Chem. Soc.  1994,  116:  3143 
  • 12 Chen J.-K. Schultz RG. Lloyd DH. Gryaznov SM. Nucleic Acids Res.  1995,  23:  2661 
  • 13 Schultz RG. Gryaznov SM. Nucleic Acids Res.  1996,  24:  2966 
  • 14 Uznanski B. Grajkowski A. Krzyzanowska B. Kazmierkowska A. Stec WJ. Wieczorek MW. Blaszczyk J. J. Am. Chem. Soc.  1992,  114:  10197 
  • 15 Baraniak J. Korczyñski D. Stec WJ. J. Org. Chem.  1999,  64:  4533 
  • 16 Garegg PJ. Lindh I. Regberg T. Stawinski J. Strömberg R. Henrichson C. Tetrahedron Lett.  1986,  27:  4051 
  • 17 Garegg PJ. Lindh I. Regberg T. Stawinski J. Strömberg R. Henrichson C. Tetrahedron Lett.  1986,  27:  4055 
  • 18 Froehler BC. Matteucci MD. Tetrahedron Lett.  1986,  27:  469 
  • 19 Froehler BC. Ng PG. Matteucci MD. Nucleic Acids Res.  1986,  14:  5399 
  • 20 Stawinski J. Kraszewski A. Acc. Chem. Res.  2002,  35:  952 
  • 21 Kers I. Stawinski J. Tetrahedron Lett.  1998,  39:  1219 
  • 22 Kers I. Stawinski J. Tetrahedron  1999,  55:  11579 
23

Spectral data for the representative products 6b and 8b.
Compound 6b: 31P NMR (121.5 MHz, DMSO-d 6): δ = 10.37, 10.26 ppm. 1H NMR (300 MHz, DMSO-d 6): δ = 1.76 (s, 3 H, 5-CH3 of 3′-amino-3′-deoxythymidine), 1.78 (s, 3 H, 5-CH3 of 3′-deoxythymidine), 2.11-2.17 (m, 5 H, 2′-H of 3′-amino-3′-deoxythymidine and 3′-deoxythymidine and 4′-H of 3′-amino-3′-deoxythymidine), 3.50-3.65 (m, 2 H, 3′-H of 3′-amino-3′-deoxythymidine and 3′-H of 3′-deoxythymidine), 3.65-3.93 (m, 2 H, 5′-H of 3′-amino-3′-deoxythymidine), 4.01 (m, 1 H, 4′-H of 3′-deoxythymidine), 4.01-4.11 (m, 2 H, 5′-H of 3′-deoxythymidine), 4.21-4.30 (m, 1 H, 3′-NH of 3′-amino-3′-deoxythymidine), 4.39-4.47 (m, 2 H, OCH 2-CH=CH2), 5.17-5.35 (m, 2 H, OCH2-CH=CH 2), 5.88-6.00 (m, 1 H, OCH2-CH=CH2), 6.12 (t, 1 H, 3 J = 6.18 Hz, 1′-H of 3′-amino-3′-deoxythymidine), 6.19 (t, 1 H, 3 J = 6.87 Hz, 1′-H of 3′-deoxythymidine), 7.52 (s, 1 H, 6-H of 3′-amino-3′-deoxythymidine), 7.73 (s, 1 H, 6-H of 3′-deoxythymidine), 11.29 (s, 1 H, 3-H of 3′-amino-3′-deoxythymidine), 11.32 (s, 1 H, 3-H of 3′-deoxythymidine) ppm. 13C NMR (75 MHz, DMSO-d 6): δ = 12.11, 12.26, 60.39, 65.58, 65.97, 66.05, 70.21, 70.30, 83.24, 83.88, 84.69, 85.80, 109.21, 109.83, 117.04, 133.53, 133.62, 135.81, 136.18, 150.35, 150.42, 163.70, 163.76 ppm. ESI-MS: m/z = 586.4 [M + H]+, 608.2 [M + Na]+.
Compound 8b: 31P NMR (121.5 MHz, DMSO-d 6): δ = 10.08, 10.30 ppm. 1H NMR (300 MHz, DMSO-d 6): δ = 1.76 (s, 3 H, 5-CH3 of 3′-amino-3′-deoxythymidine), 1.78 (s, 6 H, 5-CH3 of 3′-deoxythymidine and 3′-amino-3′-deoxythymidine), 1.99-2.35 (m, 6 H, 6 × H-2′), 3.54-3.86 (m, 5 H, H-4′ of 3′-deoxythymidine and 2 × H-5′), 3.87-4.33 (m, 8 H, 2 × H-4′, 4 × H-5′ and 2 × H-3′ of 3′-amino-3′-deoxythymidine), 4.33-4.50 (m, 3 H, 2 OCH 2-CH=CH2 and H-3′ of 3′-deoxythymidine), 5.10-5.38 (m, 4 H, 2 OCH2-CH=CH 2), 5.83-6.02 (m, 2 H, 2 OCH2-CH=CH2), 6.04-6.26 (m, 3 H, H-1′), 7.54 (s, 2 H, H-6 of 3′-deoxythymidine and 3′-amino-3′-deoxythymidine), 7.74 (s, 1 H, H-6 of 3′-amino-3′-deoxythymidine), 11.23-11.36 (m, 3 H, 3 × H of NH-3) ppm. 13C NMR (75 MHz, DMSO-d 6): δ = 12.60, 12.73, 50.82, 51.22, 60.76, 65.61, 65.76, 66.21, 66.51, 66.57, 66.74, 66.80, 70.59, 70.61, 79.75, 83.72, 83.97, 84.40, 85.03, 85.10, 86.35, 86.49, 109.72, 110.25, 110.34, 117.57, 117.74, 133.90, 133.97, 136.30, 136.72, 150.75, 150.84, 164.18 ppm. ESI-MS: m/z = 951.9 [M + Na]+.