Synlett 2005(14): 2167-2170  
DOI: 10.1055/s-2005-872258
LETTER
© Georg Thieme Verlag Stuttgart · New York

The Synthesis of Arylketones via Friedel-Crafts Acyldegermylation

Alan C. Spivey*a, Christopher J. G. Griptonb, Catherine Nobana, Nigel J. Parrc
a Department of Chemistry, Imperial College, South Kensington Campus, London, SW7 2AZ, UK
e-Mail: a.c.spivey@imperial.ac.uk;
b Department of Chemistry, University of Sheffield, Brook Hill, Sheffield, S3 7HF, UK
c Medicinal Chemistry, GlaxoSmithKline, Gunnelswood Road, Stevenage, Hertfordshire, SG1 2NY, UK
Further Information

Publication History

Received 17 June 2005
Publication Date:
03 August 2005 (online)

Abstract

Electron-rich and electron-neutral aryl trialkylgermanes are shown to be competent precursors to aryl ketones via Friedel-Crafts acyldegermylation. Given the previously demonstrated greater stability towards basic/nucleophilic conditions of arylgermanes as compared to arylsilanes/stannanes, these reactions significantly expand the utility of group 14 acyldemetalation in synthesis. This is exemplified by the cleavage of Ge-based linker models for solid-phase synthesis (SPS).

    References

  • 1 Thompson LA. Ellman JA. Chem. Rev.  1996,  96:  555 
  • 2 Gil C. Bräse S. Curr. Opin. Chem. Biol.  2004,  8:  230 
  • 3 Spivey AC. Diaper CM. Rudge AJ. Chem. Commun.  1999,  835 
  • 4 Spivey AC. Diaper CM. Rudge AJ. J. Org. Chem.  2000,  65:  5253 
  • 5 Spivey AC. Srikaran R. Diaper CM. Turner DJ. Org. Biomol. Chem.  2003,  1:  1638 
  • 6a Spivey AC. Turner DJ. Turner ML. Yeates S. Org. Lett.  2002,  4:  1899 
  • 6b Spivey AC. Turner DJ. Turner ML. Yeates S. Synlett  2004,  111 
  • 7 Katz HE. Bau Z. Gilat SL. Acc. Chem. Res.  2001,  34:  359 
  • 8a Dallaire C. Brook MA. Organometallics  1990,  9:  2873 
  • 8b Dallaire C. Brook MA. Organometallics  1993,  12:  2332 
  • 9 Eaborn C. Pande KC. J. Chem. Soc.  1960,  1566 
  • 10a Austin JD. Eabrn C. Smith JD. J. Chem. Soc.  1963,  4744 
  • 10b Dey K. Eaborn C. Walton DRM. Organomet. Chem. Synth.  1971,  1:  151 ; the ipso-acyldesilylation reactions of 2- and 3-MeOC6H4SiMe3 reported here have subsequently been shown to be in error: see ref. 11c, 11d, 17
  • For reviews of acyldesilylation see:
  • 11a Eaborn C. J. Organomet. Chem.  1975,  100:  43 
  • 11b Chan TH. Fleming I. Synthesis  1979,  761 
  • 11c Häbich D. Effenberger F. Synthesis  1979,  841 
  • 11d Bennetau B. Donogues J. Synlett  1993,  171 
  • 12 Neumann WP. Hillgärtner H. Baines KM. Dicke R. Vorspohl K. Kobs U. Nussbeutel U. Tetrahedron  1989,  45:  951 
  • For mention of acetyldegermylation of PhGeMe3 see:
  • 13a Maire J. Marrot J. Nabet R. Bull. Soc. Chim. Fr.  1981,  429 
  • 13b For acetyldegermylation of trans-PhCH=CHGeEt3 see: Marsubara S. Yoshino H. Utimoto K. Oshima K. Synlett  2000,  495 
  • 14 Félix G. Laguerre M. Dunogues J. Calas R. J. Chem. Res., Synop.  1980,  236 
  • 15 Boymond L. Rottlander M. Cahiez G. Knochel P. Angew. Chem. Int. Ed.  1998,  37:  1701 
  • 17 Bennetau B. Krempp M. Dunogues J. J. Organomet. Chem.  1987,  334:  263 
  • 18 Bassindale AR. Eaborn C. Walton DRM. Young DJ. J. Organomet. Chem.  1969,  20:  49 
  • 19a Egorochkin AN. Razuvaev GA. Russ. Chem. Rev.  1987,  56:  846 
  • 19b Hansch C. Leo A. Taft RW. Chem. Rev.  1991,  91:  165 
  • Data for Arylgermanes.
  • 20a For compounds 2a, 2f, see: Moerlein SM. J. Organomet. Chem.  1987,  319:  29 
  • 20b For compounds 2b, 2c, see: Bennett SW. Eaborn C. Jackson RA. Pearce R. J. Organomet. Chem.  1971,  28:  59 
  • 20c

    Compound 2d: a clear colourless oil, R f = 0.71 (PE). 1H NMR (250 MHz, CDCl3): δ = 0.57 [9 H, s, (CH 3)3Ge], 2.48 (6 H, s, CH3C), 7.01-7.04 (2 H, m, CH3CCHCHCHCCH3), 7.14-7.20 (1 H, m, CHCHCH). 13C NMR (63 MHz, CDCl3): δ = 3.6 (q), 24.6 (q), 127.8 (d), 128.4 (d), 143.5 (s), one quaternary carbon not observed. IR (neat): 3052, 2968, 2909, 1566, 1448, 1236, 833, 768 cm-1. MS (EI): m/z (%) = 224 (14)[M+], 209(100), 179 (7), 119 (20), 105 (39). HRMS: m/z calcd for C11H18 74Ge: 224.0620; found: 224.0622.
    Compound 2e, a clear colourless oil, R f = 0.74 (PE). 1H NMR (250 MHz, CDCl3): δ = 0.52 [9 H, s, (CH3)3Ge], 2.46 (6 H, s, CH 3C), 7.11 (1 H, s, CH3CCHCCH3), 7.24 {2 H, s, CH3CCHC[Ge(CH3)3]CHCCH3}. 13C NMR (63 MHz, CDCl3): δ = -1.7 (q), 21.5 (q), 130.1 (d), 130.7 (d), 137.3 (s), 142.4 (s). IR (neat): 2972, 2909, 1597, 1236, 1137, 828, 600 cm-1. MS (EI): m/z (%) = 224 (11) [M+], 209 (100), 179 (11), 119 (8), 105 (16). HRMS: m/z calcd for C11H18 74Ge: 224.0620; found: 224.0623.

  • 20d For compound 2g, see: Moerlein SM. J. Org. Chem.  1987,  52:  664 
  • 20e For compound 2h, see: Riedmiller F. Jockisch A. Schmidbaur H. Z. Naturforsch., B: Chem. Sci.  1999,  54:  13 
  • 21

    (f) Compound 2i: a clear colourless oil, R f = 0.79 (PE-EtOAc, 8:2). 1H NMR (250 MHz, CDCl3): δ = 0.46 [9 H, s, (CH 3)3Ge], 1.44 (3 H, t, J = 7.0 Hz, CH2CH 3), 4.43 (2 H, q, J = 7.0 Hz, CH 2CH3), 7.42-7.48 (1 H, m, GeCCHCHCHCCO2Et), 7.67-7.71 (1 H, m, GeCCHCHCHCCO2Et), 8.02-8.07 (1 H, m, GeCCHCHCHCCO2Et), 8.21 (1 H, m, GeCCHCCO2Et). 13C NMR (63 MHz, CDCl3): δ = -1.8 (q), 14.4 (q), 60.8 (t), 127.8 (d), 129.4 (d), 129.9 (s), 133.9 (d), 137.4 (d), 143.0 (s), 166.9 (s). IR (neat): 2977, 2908, 1715, 1590, 1367, 1261, 1117, 826, 742 cm-1. MS (EI): m/z (%) = 268 (1) [M+], 253 (100), 225 (48), 149 (17), 119 (31), 104 (28), 91 (34), 89 (32). HRMS (ESI+): m/z calcd for C12H19 74GeO2: 269.0597; found: 269.0588.
    For compounds 16, 17, see ref. 6b.

  • Data for Acetyl Derivatives.
  • 22a For compounds 3, 5, 7, 9, see: Cacchi S. Fabrizi G. Gavazza F. Goggiamani A. Org. Lett.  2003,  5:  289 
  • 22b For compound 4, see: Buchwald SL. Watson BT. Lum RT. Nugent WA. J. Am. Chem. Soc.  1987,  109:  7137 
  • 22c For compound 6, see: Brook MA. Henry C. Tetrahedron  1996,  52:  861 
  • 22d For compound 8, see: Friedman L. Koca RM. J. Org. Chem.  1968,  33:  1255 
  • 22e

    Compound 10: a clear colourless oil, R f = 0.38 (PE-EtOAc, 9:1). 1H NMR (400 MHz, CDCl3): δ = 0.41 [9 H, s, Ge(CH 3)3], 2.58 (3 H, s, COCH 3), 3.88 (3 H, s, OCH 3), 6.89 (1 H, dd, J = 8.5, 3.0 Hz, CH3OCCHCHCCOCH3), 7.21 [1 H, d, J = 3.0 Hz, (CH3)3GeCCH], 7.91 (1 H, d, J = 8.5 Hz, CH3COCCH). 13C NMR (63 MHz, CDCl3): δ = 0.0 (q), 26.8 (q), 55.1 (q), 111.9 (d), 121.2 (d), 132.5 (d), 143.3 (s), 167.2 (s), two quaternary carbons not observed. IR (neat): 2964, 1677, 1587, 1563, 1269, 1227, 1045, 827 cm-1. MS (EI): m/z (%) = 253 (100) [M - Me]+, 238 (11), 223 (27), 119 (23), 89 (18). HRMS (EI): m/z calcd for C12H18 74GeO2: 268.0519; found: 268.0521.

  • 22f

    Compound 18: as colourless blocks, R f = 0.54 (PE-EtOAc, 9:1); mp 29-31 °C. 1H NMR (270 MHz, CDCl3): δ = 0.086 (3 H, t, J = 7.0 Hz, CH 3CH2), 1.29-1.35 (6 H, m, CH 2 CH 2 CH 2 CH3), 1.53-1.58 (2 H, m, CCH2CH 2 ), 2.45 (3 H, s, COCH 3), 2.92 (2 H, t, J = 8.0 Hz, CCH 2CH3), 7.13 (1 H, s, CH). 13C NMR (125 MHz, CDCl3): δ = 14.1 (q), 22.6 (t), 29.2 (t), 29.8 (t), 30.2 (2 × t), 31.6 (t), 81.1 (s), 141.5 (d), 141.7 (s), 151.6 (s), 189.4 (s). IR (neat): 2955, 2855, 1653, 1401, 1237, 954 cm-1. MS (CI+): m/z (%) = 337 (100) [M + H], 354 (51), 279 (9), 228 (17), 211 (23). HRMS (CI+): m/z calcd for C12H18OSI: 337.0123; found: 337.0120.

16

Subjection of 2-TMG-4-methoxyacetophenone 12 to aluminium(III) chloride/AcCl to see if a second acyl group could be installed by ipso-degermylation resulted in the formation of no identifiable products.