Subscribe to RSS
DOI: 10.1055/s-2005-872553
© Georg Thieme Verlag Stuttgart · New York
Bone Mineral Density after Bioresorbable or Stainless Steel Intramedullary Osteosynthesis of the Sheep Femoral Bone
Publication History
Publication Date:
02 March 2006 (online)
Abstract
Bioresorbable osteosynthesis materials have theoretical advantages over stainless steel osteosynthesis materials like reduction of stress shielding and the absence of the need for a removal operation. Large volumes of bioresorbable material will be needed for intramedullary osteosynthesis in humans. A long-term follow-up study in a sheep femoral osteotomy model was performed to preclude a possible negative influence of the large volume of bioresorbable osteosynthesis material on the bone healing process. Bone mineral density (BMD) in different regions of interest (ROI) of both femur and tibia was measured with dual energy X-ray absorptiometry (DXA) 30 months after intramedullary nailing of a femoral osteotomy. Ten sheep with a bioresorbable nail after femoral osteotomy were compared to six sheep with a stainless steel nail after femoral osteotomy. In both groups, BMD was increased in the osteotomy and proximal regions of the femur and decreased in the distal femoral and tibial regions. However, BMD decreases were always smaller while increases were mostly larger after bioresorbable osteosynthesis. Stress shielding and inactivity osteoporosis seemed to be less in the bioresorbable group. No osteolysis around the large-volume intramedullary bioresorbable implants was observed. Therefore, we conclude that bioresorbable intramedullary osteosynthesis has an advantage over stainless steel osteosynthesis with regard to BMD. It seems to be a safe alternative for stainless steel osteosynthesis.
Key words
polylactic acid - bioabsorbable implants - fracture fixation - bone density - inactivity osteoporosis - stress shielding
References
- 1 Anderssson S M, Nilsson B E. Changes in bone mineral content following tibia shaft fractures. Clin Orthop Rel Res. 1978; 144 226-229
- 2 Aerssens J, Boonen S, Lowet G, Dequeker J. Interspecies differences in bone composition, density, and quality: potential implications for in vivo bone research. Endocrinology. 1998; 139 663-670
- 3 Bergsma E J, Rozema F R, Bos R RM, de Bruyn W C. Foreign-body reactions to resorbable poly(L-lactide) bone plates and screws for the fixation of unstable zygomatic fractures. J Oral Maxillofac Surg. 1993; 51 407-410
- 4 Blokhuis T J, den Boer F, Bramer J AM, Lingen A van, Roos J C, Bakker F C, Patka P, Haarman H JTM. Evaluation of strength of healing fractures with dual energy X-ray absorptiometry. Clin Orthop Rel Res. 2000; 380 260-268
- 5 den Boer F C, Patka P, Bakker F C, Wippermann B W, Lingen A van, Vink G QM, Boshuizen K, Haarman H JTM. New segmental bone defect model in sheep: quantitative analysis of healing with dual energy X-ray absorptiometry. J Orthop Res. 1999; 17 654-660
- 6 Elst M van der, Dijkema A R, Klein C PAT, Patka P, Haarman H JTM. Tissue reaction on PLLA versus stainless steel interlocking nails for fracture fixation: an animal study. Biomaterials. 1995; 16 103-106
- 7 Elst M van der, Kuiper I, Klein C PAT, Patka P, Haarman H JTM. The burst phenomenon, an animal model simulating the long-term tissue response on PLA interlocking nails. J Biomed Mater Res. 1996; 30 139-143
- 8 Elst M van der, Bramer J AM, Klein C PAT, de Lange E SM, Patka P, Haarman H JTM. Biodegradable interlocking nails for fracture fixation. Clin Orthop Rel Res. 1998; 357 192-204
- 9 Eyres K S, Kanis J A. Bone loss after tibial fracture. J Bone Joint Surg [Br]. 1995; 77 473-478
- 10 Finsen V, Haave O. Changes in bone-mass after tibial shaft fracture. Acta Orthop Scand. 1987; 58 369-371
- 11 Finsen V. Osteopenia after osteotomy of the tibia. Calcif Tissue Int. 1988; 42 1-4
- 12 Finsen V, Benum P. Osteopenia after ankle fractures. The influence of early weight bearing and muscle activity. Clin Orthop Rel Res. 1989; 245 261-268
- 13 Grundnes O, Reikerås O. Effects of instability on bone healing. Acta Orthop Scand. 1993; 64 55-58
- 14 Hulth A. Current concepts of fracture healing. Clin Orthop Rel Res. 1989; 249 265-284
- 15 Janes G C, Collopy D M, Price R, Sikorski J M. Bone density after rigid plate fixation of tibial fractures. A dual-energy X-ray absorptiometry study. J Bone Joint Surg [Br]. 1993; 75 914-917
- 16 Juutilainen T, Hirvensalo E, Majola A, Partio E K, Pätiälä H, Rokkanen P, Kinnunen J. Bone mineral density in fractures treated with absorbable or metallic implants. Ann Chir Gyn. 1997; 86 51-55
- 17 Kannus P, Järvinen M, Sievänen H, Oja P, Vuori I. Osteoporosis in men with a history of tibial fracture. J Bone Miner Res. 1994; 9 423-429
- 18 Kaymakci B, Wark J D. Precise accurate mineral measurements of excised sheep bones using X-ray densitometry. Bone Min. 1994; 25 231-246
- 19 Markel M D, Wikenheiser M A, Morin R L, Lewallen D G, Chao E YS. The determination of bone fracture properties by dual-energy X-ray absorptiometry and single-photon absorptiometry: A comparative study. Calcif Tissue Int. 1991; 48 392-399
- 20 Markel M D, Bogdanske J J. Dual-energy X-ray absorptiometry of canine femurs with and without fracture fixation devices. Am J Vet Res. 1994; 55 862-866
- 21 McKibbbin B. The biology of fracture healing in long bones. J Bone Joint Surg [Br]. 1978; 60 150-162
- 22 Nilsson B ER. Post-traumatic osteopenia: A quantitative study of the bone mineral mass in the femur following fracture of the tibia in man using americium-241 as a photon source. Acta Orthop Scand. 1966; 37 (Suppl 91) 1-55
- 23 O'Sullivan M E, Bronk J T, Chao E YS, Kelly J. Experimental study of the effect of weight bearing on fracture healing in the canine tibia. Clin Orthop Rel Res. 1994; 302 273-283
- 24 Otto T E, Klein C PAT, Patka P, Vriesde R, Haarman H JTM. Intramedullary bone formation after polylactic acid wire implantation. J Mater Sci Mater Med. 1994; 5 407-410
- 25 Otto T E, Klein Nulend J, Patka P, Burger E H, Haarman H JTM. Effect of (poly)-L-lactic acid on the proliferation and differentiation of primary bone cells in vitro. J Biomed Mat Res. 1996; 32 513-518
- 26 Otto T E, Lingen A van, Patka P, Lips P, Haarman H JTM. Regional bone loss after tibial fracture in the goat. Osteo Trauma Care. 2006; 14 64-69
- 27 Poest C E van der, Wiel H van der, Patka P, Roos J C, Lips P. Long-term consequences of fracture of the lower leg: cross-sectional study and long-term longitudinal follow-up of Bone Mineral Density in de hip after fracture of lower leg. Bone. 1999; 24 131-134
- 28 Rokkanen P, Böstman O, Vainionpää S, Vihtonen K, Törmälä P, Laiho J, Kilpikari J, Tamminmäki M. Biodegradable implants in fracture fixation: early results of treatment of fractures of the ankle. Lancet. 1985; 1 1422-1424
- 29 Tonino A J, Davidson C L, Klopper P J, Linclau L A. Protection from stress in bone and its effects: Experiments with stainless steel and plastic plates in dogs. J Bone Joint Surg [Br]. 1976; 58 107-113
- 30 Uhthoff H K, Jaworski Z FG. Bone loss in response to long-term immobilisation. J Bone Joint Surg [Br]. 1978; 60 420-429
- 31 Ulivieri F M, Bossi E, Azzoni R, Ronzani C, Trevisan C, Montesano A, Ortolani S. Quantification by dual photon absorptiometry of local bone loss after fracture. Clin Orthop Rel Res. 1987; 250 291-296
- 32 Vert M, Li S, Spenlehauer G, Guerin P. Bioresorbability and biocompatibility of aliphatic polyesters. J Mater Sci Mat in Med. 1992; 3 432-446
- 33 Viljanen J, Kinnunen J, Bondestam S, Rokkanen P. Intramedullary fixation of distal femoral osteotomies with bioresorbable self-reinforced poly-L-lactide and metallic intramedullary rods assessed by plain radiographs, quantitative computed tomography, and magnetic resonance imaging: an experimental study in rabbits. J Biomed Mater Res. 1998; 39 222-228
- 34 Wiel H E van der, Lips P, Nauta J, Patka P, Haarman H JTM, Teule G JJ. Loss of bone in the proximal part of the femur following unstable fractures of the leg. J Bone Joint Surg [Am]. 1994; 76 230-236
- 35 Williams-Russo P, Healey J H, Szatrowski T P, Schneider R, Paget S, Ales K, Schwartzberg P. Clinical reproducibility of dual energy X-ray absorptiometry. J Orthop Res. 1995; 13 250-257
T. E. OttoM. D.
Department of Trauma Surgery · VU University Medical Center
PO Box 70 57
1007 MD Amsterdam
The Netherlands
Phone: +31/20/4 44 02 68
Fax: +31/20/4 44 02 74
Email: pam.vleeuwen@vumc.nl