RSS-Feed abonnieren
DOI: 10.1055/s-2005-917084
Direct Acylation across a Silyloxy System of Glycerol with Carboxylic Acid Anhydrides: A Novel Strategy to the Prodrug Carrier Modules - 1,3-Diacyl-sn-glycerols
Publikationsverlauf
Publikationsdatum:
05. Oktober 2005 (online)

Abstract
Trichloroacetylation of 1-acyl-3-O-tert-butyldimethylsilyl-sn-glycerols, followed by a direct conversion of the silyl protecting group into an ester functionality by means of a reagent system: tetra-n-butylammonium bromide (TBABr)-trimethylsilyl bromide (TMSBr)-carboxylic acid anhydride (CAA), constitutes an efficient protocol for the preparation of enantiomerically pure 1,3-diacyl-sn-glycerols in high yields.
Key words
tetra-n-butylammonium bromide - carboxylic acid anhydrides - trimethylsilyl bromide - structured triglycerides - silyl protections - 1,3-diacyl-sn-glycerols - prodrug carriers
-
1a
Kido H.Fukussen N.Ishidoh K.Katunuma N. Biochem. Biophys. Res. Commun. 1986, 138: 275 -
1b
Siegel DP.Banschbach J.Alford D.Ellens H.Lis LJ.Quinn PJ.Yeagle PL.Bentz J. Biochemistry 1989, 28: 3703 - 2
Iwasaki Y.Yamane T. J. Mol. Catal. B: Enzym. 2000, 10: 129 - 3
Lambert DM.Neuvens L.Mergen F.Gallez B.Poupaert JH.Ghyselburton J.Maloteaux JM.Dumont P. J. Pharm. Pharmacol. 1993, 45: 186 -
4a
Paris GY.Garmaise DL.Cimon DG.Swett L.Carter GW.Young P. J. Med. Chem. 1980, 23: 9 -
4b
Paris GY.Garmaise DL.Cimon DG.Swett L.Carter GW.Young P. J. Med. Chem. 1980, 23: 79 -
4c
Patra A.Chaudhuri SK. J. Indian Chem. Soc. 1988, 65: 367 - 5
Houte H.Partali V.Sliwka H.-R.Quartey EGK. Chem. Phys. Lipids 2000, 105: 105 - 6
Naalsund T.Malterud KE.Partali V.Sliwka H.-R. Chem. Phys. Lipids 2001, 112: 59 -
7a
Garzon-Aburbeh A.Poupaert JH.Claesen M.Dumont P. J. Med. Chem. 1986, 29: 687 -
7b
Garzon-Aburbeh A.Poupaert JH.Claesen M.Dumont P.Atassi G. J. Med. Chem. 1983, 26: 1200 -
8a
Gallez B.Demeure R.Debuyst R.Leonard D.Dejehet F.Dumont P. Magn. Reson. Imaging 1992, 10: 445 -
8b
Weichert JP.Longino MA.Bakan DA.Spigarelli MG.Chou T.Schwendner SW.Counsell RE. J. Med. Chem. 1995, 38: 636 - 9
Waldinger C.Schneider M. J. Am. Oil Chem. Soc. 1996, 73: 1513 -
10a
Rose WG. J. Am. Chem. Soc. 1947, 69: 1384 -
10b
Mattson FH.Volpenhein RA. J. Lipid Res. 1962, 3: 281 -
10c
Bentley PH.McCrae W. J. Org. Chem. 1970, 35: 2082 -
10d
Nuhn P.Brezesinski G.Dobner B.Forster G.Gutheil M.Dorfler H. Chem. Phys. Lipids 1986, 39: 221 -
10e
Ikeda I.Gu XP.Miyamoto I.Okahara M. J. Am. Oil Chem. Soc. 1989, 66: 822 -
10f
Gaffney PRJ.Reese CB. Tetrahedron Lett. 1997, 38: 2539 -
11a
Lee K.-T.Akoh CC. Food Rev. Int. 1998, 14: 17 -
11b
Sonnet PE. Chem. Phys. Lipids 1991, 58: 35 -
12a
deHaas GH.vanDeenen LM. Biochim. Biophys. Acta 1964, 84: 469 -
12b
vanDeenen LM.deHaas GH. Biochim. Biophys. Acta 1963, 70: 538 - 13
Haftendorn R.Schwarze G.Ulbrich-Hofmann R. Chem. Phys. Lipids 2000, 104: 57 -
14a
Kunitake T.Okahata Y.Tawaki SI. J. Colloid Interface Sci. 1984, 103: 190 -
14b
Frense D.Haftendorn R.Ulbrich-Hofmann R. Chem. Phys. Lipids 1995, 78: 81 - 15
Lok CM.Ward JP.vanDorp DA. Chem. Phys. Lipids 1976, 16: 115 -
16a
Lok CM.Mank APJ.Ward JP. Chem. Phys. Lipids 1985, 36: 329 -
16b
Mank APJ.Ward JP.VanDorp DA. Chem. Phys. Lipids 1976, 16: 107 - 17
deGroot WTM.Lok CM.Ward JP. Chem. Phys. Lipids 1988, 47: 75 -
18a
Jensen RG.Ferraina RA. J. Am. Oil Chem. Soc. 1989, 65: 135 -
18b
Pollack JD.Clark DS.Somerson NL. J. Lipid Res. 1971, 12: 563 - 19
Froling A.Pabon HJJ.Ward JP. Chem. Phys. Lipids 1984, 36: 29 - 20
Hartman L. Chem. Rev. 1958, 58: 845 - 21
Han S.-Y.Cho S.-H.Kim S.-Y.Seo J.-T.Moon S.-J.Jhon G.-J. Bioorg. Med. Chem. Lett. 1999, 9: 59 - 22
Dodd GH.Golding BT.Ioannou PV. J. Chem. Soc., Chem. Commun. 1975, 249 -
23a
Boswinkel G.Derksen JTP.Riet Kvt.Cuperus FP. J. Am. Oil Chem. Soc. 1996, 73: 707 -
23b
Martin JB. J. Am. Chem. Soc. 1953, 75: 5483 -
23c
Murgia S.Caboi F.Monduzzi M.Ljusberg-Wahren H.Nylander T. Prog. Colloid Polym. Sci. 2002, 120: 41 -
23d
Serdarevich B. J. Am. Oil Chem. Soc. 1967, 44: 381 -
23e
Sjursnes BJ.Anthonsen B. Biocatalysis 1994, 9: 285 -
23f
Sonnett PE.Dudley RL. Chem. Phys. Lipids 1994, 72: 185 -
23g
Paltauf F.Hermetter A. Prog. Lipid Res. 1994, 33: 239 - 24
Lalonde M.Chan TH. Synthesis 1985, 817 - 25
Burgos CE.Ayer DE.Johnson RA. J. Org. Chem. 1987, 52: 4973 - 26
Xia J.Hui Y.-Z. Tetrahedron: Asymmetry 1997, 8: 3131 - 27
Leung W.-H.Wong TKT.Tran JCH.Yeung L.-L. Synlett 2000, 677 -
28a
Zhang W.Robins MJ. Tetrahedron Lett. 1992, 33: 1177 -
28b
Bajwa JS.Vivelo J.Slade J.Repic O.Blacklock T. Tetrahedron Lett. 2000, 41: 6021 -
29a
Ganem B.Small VRJ. J. Org. Chem. 1974, 39: 3728 -
29b
Danishefsky SJ.Mantlo N. J. Am. Chem. Soc. 1988, 110: 8129 - 30
Fuchs E.-F.Lehmann J. Chem. Ber. 1974, 107: 721 - 31
Kim S.Lee WJ. Synth. Commun. 1986, 16: 659 - 32
Oriyama T.Oda M.Gono J.Koga G. Tetrahedron Lett. 1994, 35: 2027
References
General Procedure for the Synthesis of Trichloro-acetylated Synthon 2 (Step A).
1-Oleoyl-3-O-tert-butyldimethylsilyl-sn-glycerol (1, 0.857 g, 1.82 mmol) and pyridine (2.91 mL, 36.0 mmol) in alcohol-free CHCl3 (10.0 mL), was treated with a solution of trichloroacetyl chloride (0.306 mL, 2.73 mmol) in alcohol-free CHCl3 (10.0 mL), at -20 °C and the reaction mixture was kept at r.t. for 2 h. Solvents were removed under reduced pressure and the thus obtained unsymmetrical diester 2 was isolated in pure state (>99%, 1H NMR spectroscopy) by flash column chromatography (silica gel, mobile phase: toluene).
Compound 2: yield 1.065 g (95%, colourless oil); R
f
= 0.70 (pentane-toluene-EtOAc = 40:50:10, v/v/v); [α]D
20 +11.87 (c, 10.26; CHCl3). Anal. Calcd for C29H53Cl3O5Si (616.17): C, 56.53; H, 8.67; Cl, 17.26%. Found: C, 56.67; H, 8.60; Cl, 17.30.
General Procedure for the Preparation of Triester Congeners of 1,3-DAG 3, 4 (Step B).
To a solution of silyl ether 2 (0.616 g 1.00 mmol) and tetra-n-butylammonium bromide (0.645 g, 2.00 mmol) in alcohol-free CHCl3 (3.0 mL), a mixture of the selected carboxylic acid anhydride (3.00 mmol) and trimethylbromosilane (0.195 mL, 1.50 mmol) in the same solvent (3.0 mL) was added and the reaction system was kept under argon, in a pressure-proof glass ampoule at 80 °C(bath) for 2 h. Then, CHCl3 was removed under reduced pressure and the triglyceride 3 or 4 was isolated in pure state (purity >99%, 1H NMR spectroscopy) by flash column chromatography (silica gel, mobile phase: toluene-EtOAc = 98:2, v/v).
Compound 3 (obtained from 2 and Ac2O: 0.284 mL, 3.00 mmol). Yield 0.511 g (94%, colourless oil); R
f
(pentane-toluene-EtOAc = 40:50:10, v/v/v) = 0.49; [α]D
20 -0.68 (c, 9.77; CHCl3). Anal. Calcd for C25H41Cl3O6 (543.95): C, 55.20; H, 7.60; Cl, 19.55%. Found: C, 55.30; H, 7.55; Cl, 19.47.
Compound 4 (obtained from 2 and palmitic anhydride: 1.484 g, 3.00 mmol). Yield 0.711 g (96%, colourless oil); R
f
= 0.58 (pentane-toluene-EtOAc = 40:50:10, v/v/v); [α]D
20 0.00 (c, 4.26; CHCl3). Anal. Calcd for C39H69Cl3O6 (740.32): C, 63.27; H, 9.39; Cl, 14.37%. Found: C, 63.35; H, 9.50; Cl, 14.30.
General Procedure for the Preparation of 1,3-Diacyl-glycerols 5, 6 (Step C).
To a solution of 3 or 4 (1.00 mmol) in THF (5.0 mL), a mixture of pyridine (4.0 mL, 50 mmol) and MeOH (20.3 mL, 500 mmol) was added and the reaction system was left at r.t. for 2 h. Solvents were evaporated under reduced pressure (bath temperature 50 °C) and the residue was kept under high vacuum at r.t. for 2-3 h to give the unprotected diglyceride 5 and 6 (purity >99%, 1H NMR spectroscopy).
Compound 5 (obtained from 3). Yield 0.398 g (100%, colourless oil); R
f
= 0.29 (toluene-EtOAc = 80:20, v/v); [α]D
20 -0.28 (c, 9.15; CHCl3). Anal. Calcd for C23H42O5 (398.58): C, 69.31; H, 10.62%. Found: C, 69.19; H, 10.70.
Compound 6 (obtained from 4). Yield 0.595 g (100%, white solid, mp 45.5-47.0 °C from pentane, lit.
[15]
mp 45-46 °C); R
f
= 0.52 ( toluene-EtOAc = 80:20, v/v). Anal. Calcd for C37H70O5 (594.95): C, 74.69; H, 11.86%. Found: C, 74.81; H, 11.80.