RSS-Feed abonnieren
DOI: 10.1055/s-2005-917097
Efficient Synthesis of 4-Cyano 2,3-Dihydrooxazoles by Direct Amination of 2-Alkylidene 3-Oxo Nitriles
Publikationsverlauf
Publikationsdatum:
05. Oktober 2005 (online)

Abstract
The addition of N-protected O-sulfonyl hydroxylamine derivatives on 2-alkylidene 3-oxo nitriles gives 2,5-disubstituted 4-cyano 2,3-dihydrooxazoles (4-oxazolines) by a practical and efficient synthetic procedure under very mild conditions in high yields. Likely, the formation of N,O-heterocycles proceeds through a domino reaction involving a fast rearrangement of unstable 2-acyl 2-cyano aziridines.
Key words
Michael additions - cyclizations - domino reactions - 2-acyl aziridines - heterocycles
-
1a
Comprehensive Heterocyclic Chemistry II
Katritzky AR.Rees CW.Scriven EFV. Pergamon Press; Oxford: 1996. -
1b
Laschat S. Liebigs Ann./Recl. 1997, 1 ; and references cited therein -
2a
Fioravanti S.Morreale A.Pellacani L.Tardella PA. Synthesis 2001, 1975 -
2b
Colantoni D.Fioravanti S.Pellacani L.Tardella PA. Org. Lett. 2004, 6: 197 - 3
Fioravanti S.Morreale A.Pellacani L.Tardella PA. Synlett 2004, 1083 -
4a
Huisgen R.Scheer W.Huber H. J. Am. Chem. Soc. 1967, 89: 1753 -
4b
Baldwin JE.Pudussery RG.Qureshi AK.Sklarz B. J. Am. Chem. Soc. 1968, 90: 5325 - 5
Texier-Boullet F.Foucaud A. Tetrahedron Lett. 1982, 23: 4927 -
7a
Pihuleac J.Bauer L. Synthesis 1989, 61 -
7b
Hanessian S.Johnstone S. J. Org. Chem. 1999, 64: 5896 -
7c
Fioravanti S.Marchetti F.Morreale A.Pellacani L.Tardella PA. Org. Lett. 2003, 5: 1019 -
7d
Fioravanti S.Colantoni D.Pellacani L.Tardella PA. J. Org. Chem. 2005, 70: 3296 - 8 The formation of the unstable 2,3-dihydroisoxazole (4-isoxazoline) (IV, Figure 1), as the precursor of aziridine I shown in the Scheme 2, is not supported by any experimental evidence. For a recent example of 2,3-dihydroisoxazoles as synthons for 2-acyl aziridines see:
Ishikawa T.Kudoh T.Yoshida J.Yasuhara A.Manabe S.Saito S. Org. Lett. 2002, 4: 1907 - 9
Lopez-Calle E.Keller M.Eberbach W. Eur. J. Org. Chem. 2003, 1438 -
10a
Lown JW.Smalley RK.Dallas G. J. Chem. Soc., Chem. Commun. 1968, 1543 -
10b
Lown JW.Matsumoto K. Can. J. Chem. 1970, 48: 3399 -
10c
Person H.Luanglath K.Baudru M.Foucaud A. Bull. Soc. Chim. Fr. 1976, 1989 -
10d
Freeman JP. Chem. Rev. 1983, 83: 241 -
11a
Najera C.Sansano JM. Curr. Org. Chem. 2003, 7: 1105 -
11b
Eberbach W. Methods of Molecular Transformations, In Science of Synthesis (Houben-Weyl) Vol. 27:Padwa A. Georg Thieme Verlag; Stuttgart: 2004. p.441 - 13 We reported that stable polyfunctionalized 2-acyl aziridines were obtained using nosyloxycarbamates and a Wittig reaction led us to interesting alkenyl aziridines. See:
Fioravanti S.Morreale A.Pellacani L.Tardella PA. Mol. Diversity 2003, 6: 177 -
14a
Vedejs E.Grissom JW. J. Am. Chem. Soc. 1988, 110: 3238 -
14b
Vedejs E.Monahan SD. J. Org. Chem. 1997, 62: 4763 -
15a
Jones WD,Ciske FL,Dinerstein RJ, andDiekema KA. inventors; U.S. 6004959. ; Chem. Abstr. 1999, 132, 35524 -
15b
Hanaki N, andGoto T. inventors; Jpn. Kokai Tokkyo Koho, JP 2000273333. ; Chem. Abstr. 2000, 133, 268226 -
15c
Hanaki N, andGoto T. inventors; Jpn. Kokai Tokkyo Koho, JP 2000275773. ; Chem. Abstr. 2000, 133, 288779 - 16
Caiazzo A.Dalili S.Picard C.Sasaki M.Siu T.Yudin AK. Pure Appl. Chem. 2004, 76: 603
References
Typical Experimental Procedure.
All compounds were synthesized with a Carousel Reaction Station from Radleys Discovery Technologies (U.K.). To the obtained 2-alkylidene 3-oxo nitriles in CH2Cl2, CaO and nosyloxycarbamates were added in the amounts reported in Table
[1]
. After completion (TLC and GC analyses), the crude reaction mixtures were filtered through plugs of silica gel using a 9:1 hexane-EtOAc mixture and the 2,5-disubstituted 4-cyano 2,3-dihydrooxazoles were obtained after solvent removal.
Selected spectral data of new compounds.
Compound 13: yellow oil. IR (CCl4): 2223, 1714, 1630 cm-1. 1H NMR (300 MHz, CDCl3): δ = 0.94 (t, J = 7.2 Hz, 3 H), 1.28 (s, 9 H), 1.67-1.78 (m, 2 H), 5.23 (s, 2 H), 5.97 (t, J = 5.4 Hz, 1 H), 7.30-7.48 (m, 5 H). 13C NMR (75 MHz, CDCl3): δ = 10.7, 23.7, 27.8, 40.9, 69.2, 91.0, 95.3, 116.4, 128.1, 128.3, 128.8, 135.1, 152.1, 157.9. GCMS: m/z (%) = 314 (2) [M+], 179 (11), 137 (27), 91 (100), 57 (15). HRMS (ES Q-TOF): m/z calcd for C18H23N2O3 [M + H]+: 315.1709; found: 315.1601.
Compound 18: yellow oil. IR (CCl4): 2218, 1717, 1645 cm-1. 1H NMR (300 MHz, CDCl3): δ = 1.01 (d, J = 6.6 Hz, 3 H), 1.02 (d, J = 6.6 Hz, 3 H), 1.36 (t, J = 7.2 Hz, 3 H), 1.68-1.74 (m, 2 H), 1.87-1.92 (m, 1 H), 4.29 (q, J = 7.2 Hz, 2 H), 6.24 (dd, J = 6.6 Hz, 1 H), 7.40-7.53 (m, 3 H), 7.84-7.87 (m, 2 H). 13C NMR (75 MHz, CDCl3): δ = 14.1, 22.4, 22.7, 23.4, 42.8, 63.0, 90.9, 93.7, 114.7, 125.9, 126.3, 128.6, 128.7, 131.3, 152.7, 156.3. GCMS: m/z (%) = 300(7) [M+], 227 (12), 171 (53), 145 (14), 105 (100), 77 (32). HRMS (ES Q-TOF): m/z calcd for C17H21N2O3 [M + H]+: 301.1552; found: 301.1546.
With respect to 13, [6] the 1H NMR spectrum of the crude mixture shows additional frequencies at δ = 1.12 (t, J = 7.2 Hz, 3 H), 1.31 (s, 9 H), 1.83-1.98 (m, 2 H), 2.90 (t, J = 6.6 Hz, 1 H), 5.08-5.20 (m, 2 H). In particular the signal at δ = 2.90 is typical of an aziridine proton.