References
1
King TJ.
Imre S.
Öztunc A.
Tetrahedron Lett.
1979,
20:
1453
2
Howard BM.
Schulte GR.
Fenical W.
Solheim B.
Clardy J.
Tetrahedron
1980,
36:
1747
3
Elliott MC.
Contemp. Org. Synth.
1994,
1:
457
Total syntheses of obtusenyne:
4a
Fujiwara K.
Awakura M.
Tsunashima M.
Nakamura A.
Honma T.
Murai A.
J. Org. Chem.
1999,
64:
2616
4b
Crimmins MT.
Powell MT.
J. Am. Chem. Soc.
2003,
125:
7592
Total synthesis of brasilenyne and citation of important contributions in the field:
5a
Denmark SE.
Yang S.-M.
J. Am. Chem. Soc.
2002,
124:
2102
5b
Denmark SE.
Yang S.-M.
J. Am. Chem. Soc.
2004,
126:
12432 ; and references cited therein
6
Boeckman RK.
Zhang J.
Reeder MR.
Org. Lett.
2002,
4:
3891
7
Nakamura I.
Yamamoto Y.
Chem. Rev.
2004,
104:
2127
8
Burton JW.
Clark JS.
Derrer S.
Stork TC.
Bendall JG.
Holmes AB.
J. Am. Chem. Soc.
1997,
119:
7483 ; and references cited therein
9a
Curtis NR.
Holmes AB.
Looney MG.
Tetrahedron
1991,
47:
7171
9b
Curtis NR.
Holmes AB.
Looney MG.
Tetrahedron Lett.
1992,
33:
671
9c
Curtis NR.
Holmes AB.
Tetrahedron Lett.
1992,
33:
675
10 All new compounds exhibited satisfactory spectroscopic and exact mass/elemental analysis data.
11 The enantiomeric excess and absolute configuration of (+)-2 were determined by analysis of the elimination product methyl (4R,2E)-hydroxyhex-2-enoate that was formed in 86% yield by the treatment of (+)-2 with DBU. The enantiomeric excess of the allylic alcohol was determined by 1H NMR chiral shift reagent [(+)-Eu(hfc)3] analysis, with the absolute configuration being assigned by comparison of the optical rotation of the allylic alcohol with that of its enantiomer.
[12]
The enantiomeric excess of (+)-2 was confirmed by Mosher ester analysis of the secondary alcohol formed by the treatment of 3 with TBAF.
12
Burgess K.
Henderson I.
Tetrahedron: Asymmetry
1990,
1:
57
13
Mohr P.
Rösslein L.
Tamm C.
Tetrahedron Lett.
1989,
30:
2513
14 The relative stereochemistry of the racemic diol (±)-7 was determined by 1H NMR NOE and coupling constant analysis of the derived acetonide.
[9c]
15
Congreve MS.
Davison EC.
Fuhry MAM.
Holmes AB.
Payne AN.
Robinson RA.
Ward SE.
Synlett
1993,
663
16
Tsushima K.
Murai A.
Tetrahedron Lett.
1992,
33:
4345
17
Bendall JG.
Payne AN.
Screen TEO.
Holmes AB.
Chem. Commun.
1997,
1067
18 NMR data for synthetic 1: 1H NMR (500 MHz, C6D6, 50 °C): δ = 5.92 (dt, 1 H, J = 10.8, 7.3 Hz), 5.53-5.43 (m, 3 H), 4.20-4.13 (m, 1 H), 3.90 (dt, 1 H, J = 10.8, 2.8 Hz), 3.77 (dt, 1 H, J = 10.8, 3.0 Hz), 3.74-3.68 (m, 1 H), 3.02 (ddt, 1 H, J = 14.2, 1.2, 7.1 Hz), 2.92 (d, 1 H, J = 2.0 Hz), 2.87 (dt, 1 H, J = 14.7, 7.0 Hz), 2.78-2.62 (br m, 2 H), 2.52 (ddd, 1 H, J = 12.9, 6.5, 3.0 Hz), 2.40 (ddd, 1 H, J = 13.2, 6.6, 2.9 Hz), 1.91 (dqn, 1 H, J = 14.2, 7.4 Hz), 1.74 (dqn, 1 H, J = 14.2, 7.4 Hz), 0.85 (t, 1 H, J = 7.4 Hz). 13C NMR (125 MHz, C6D6, 34 °C): δ = 140.7 (C-4), 110.7 (C-3), 82.8 (C-1), 80.1 (C-2), 63.3 (C-7), 56.6 (C-12), 35.3 (C-5), 32.0 (C-8), 31.2 (br, C-11), 28.7 (C-14), 10.1 (C-15). Owing to the conformational mobility of the natural product the signals due to C-6 and C-13 in the 13C NMR spectrum were broadened to the baseline. Signals assignable to C-9 and C-10 were obscured by solvent.