Subscribe to RSS
DOI: 10.1055/s-2005-921925
Expanding the Utility of Lithiated Epoxides and Aziridines in Synthesis
Publication History
Publication Date:
16 December 2005 (online)

Abstract
This account details new reactions and synthetic uses of lithiated epoxides and aziridines that have been developed in the principal author’s laboratories.
-
1 Introduction
-
2 Epoxides and Organolithiums
-
2.1 Enantioselective Desymmetrisation of meso-Epoxides by α-Lithiation-Rearrangement
-
2.2 Reductive Alkylation of Epoxides with Organolithiums
-
2.3 α-Lithiated Epoxides of Cycloalkenes as Nucleophiles
-
2.4 α-Lithiated Terminal Epoxides as Nucleophiles
-
3 Terminal Epoxides and Lithium Amides
-
3.1 Electrophile Trapping
-
3.2 Enamines from Epoxides and Hindered Lithium Amides
-
3.3 Intramolecular Cyclopropanation
-
3.4 Reductive Alkylation in the presence of LTMP
-
3.5 Dimerisation of α-Lithiated Epoxides
-
4 α-Lithiated Aziridines
-
4.1 Reductive Alkylation of Aziridines with Organolithiums
-
4.2 α-Lithiated Terminal Aziridines as Nucleophiles
-
5 Summary and Outlook
Key words
asymmetric synthesis - aziridines - carbenoids - epoxides - lithiation
-
2a
Hodgson DM.Gibbs AR.Lee GP. Tetrahedron 1996, 52: 14361 -
2b
Hodgson DM.Gras E. Synthesis 2002, 1625 -
2c
Hodgson DM.Tomooka K.Gras E. Organolithiums in Enantioselective Synthesis, In Topics in Organometallic Chemistry Vol. 5:Hodgson DM. Springer; Berlin: 2003. p.217 -
2d
Hodgson DM.Bray CD. In Aziridines and Epoxides in Organic SynthesisYudin AK. Wiley-VCH; Weinheim: 2006. p.145 - For other recent reviews, see:
- 2e Oxiranyl and Aziridinyl Anions as Reactive Intermediates in Synthetic Organic Chemistry, In Tetrahedron Symposia-in-Print, Florio, S., Ed. Tetrahedron 2003, 59: 9683
-
2f
Chemla F.Vrancken E. In The Chemistry of Organolithium ReagentsRappoport Z.Marek I. Wiley and Sons; New York: 2004. p.1165 -
2g
Capriati V.Florio S.Luisi R. Synlett 2005, 1359 - 3
Hoffmann R. Angew. Chem., Int. Ed. Engl. 1988, 27: 1593 - 4
Hodgson DM.Witherington J.Moloney BA. J. Chem. Soc., Perkin Trans. 1 1993, 1543 - 5
Hodgson DM.Witherington J.Moloney BA. Tetrahedron: Asymmetry 1994, 5: 337 - 6
Hodgson DM.Witherington J.Moloney BA. J. Chem. Soc., Perkin Trans. 1 1994, 23: 3373 - 7
Hodgson DM.Gibbs AR. Tetrahedron Lett. 1997, 38: 8907 - 8
Hodgson DM.Gibbs AR.Drew MGB. J. Chem. Soc., Perkin Trans. 1 1999, 3579 - 9
Hodgson DM.Gibbs AR. Synlett 1997, 657 - 10
Hodgson DM.Gibbs AR. Tetrahedron: Asymmetry 1996, 7: 407 - 11
Crandall JK.Apparu M. Org. React. 1983, 29: 345 - 12
Cope AC.Lee H.-H.Petree HE. J. Am. Chem. Soc. 1958, 80: 2849 - 13
Boeckman RK. Tetrahedron Lett. 1977, 18: 4281 -
14a
Hoppe D.Hintze F.Tebben P. Angew. Chem., Int. Ed. Engl. 1990, 29: 1422 -
14b Review:
Hoppe D.Hintze F.Tebben P.Paetow M.Ahrens H.Schwerdtfeger J.Sommerfeld P.Haller J.Guarnieri W.Kolczewski S.Hense T.Hoppe I. Pure Appl. Chem. 1994, 66: 1479 - 15
Hodgson DM.Lee GP. Chem. Commun. 1996, 1015 - 16
Hodgson DM.Lee GP.Marriott RE.Thompson AJ.Wisedale R.Witherington J. J. Chem. Soc., Perkin Trans. 1 1998, 2151 - 18
Hodgson DM.Lee GP. Tetrahedron: Asymmetry 1997, 8: 2303 - 19
Crandall JK. J. Org. Chem. 1964, 29: 2830 - 20
Hodgson DM.Wisedale R. Tetrahedron: Asymmetry 1996, 7: 1275 - 21
Hodgson DM.Marriott RE. Tetrahedron Lett. 1997, 38: 887 - 22
Hodgson DM.Marriott RE. Tetrahedron: Asymmetry 1997, 8: 519 - 23
Hodgson DM.Robinson LA. Chem. Commun. 1999, 309 - 24
Hodgson DM.Cameron ID.Christlieb M.Green R.Lee GP.Robinson LA. J. Chem. Soc., Perkin Trans. 1 2001, 2161 - 25
Hodgson DM.Robinson LA.Jones ML. Tetrahedron Lett. 1999, 40: 8637 - 26
Hodgson DM.Maxwell CR.Wisedale R.Matthews IR.Carpenter KJ.Dickenson AH.Wonnacott S. J. Chem. Soc., Perkin Trans. 1 2001, 3150 - 27
Hodgson DM.Maxwell CR.Matthews IR. Synlett 1998, 1349 - 28
Hodgson DM.Galano J.-M. Org. Lett. 2005, 7: 2221 ; and references cited therein - 29
Hodgson DM.Maxwell CR.Matthews IR. Tetrahedron: Asymmetry 1999, 10: 1847 - 30
Hodgson DM.Cameron ID. Org. Lett. 2001, 3: 441 -
31a
Hodgson DM.Galano J.-M.Christlieb M. Chem. Commun. 2002, 2436 -
31b
Hodgson DM.Galano J.-M.Christlieb M. Tetrahedron 2003, 59: 9719 - 32
Crandall JK.Lin L.-HC. J. Am. Chem. Soc. 1967, 89: 4527 - 33
Boche G.Lohrenz JCW. Chem. Rev. 2001, 101: 697 - 34
Julia M.Pfeuty-Saint Jalmes V.Ple K.Verpeaux J.-N. Bull. Soc. Chim. Fr. 1996, 133: 15 -
35a
Doris E.Dechoux L.Mioskowski C. Tetrahedron Lett. 1994, 35: 7943 -
35b
Doris E.Dechoux L.Mioskowski C. Synlett 1998, 337 - 36
Sun P.Weinreb SM.Shang M. J. Org. Chem. 1997, 62: 8604 -
37a
Hodgson DM.Miles TJ.Witherington J. Synlett 2002, 310 -
37b
Hodgson DM.Miles TJ.Witherington J. Tetrahedron 2003, 59: 9729 -
38a
Hodgson DM.Maxwell CR.Miles TJ.Paruch E.Stent MAH.Matthews IR.Wilson FX.Witherington J. Angew. Chem. Int. Ed. 2002, 41: 4313 -
38b
Hodgson DM.Maxwell CR.Miles TJ.Paruch E.Matthews IR.Witherington J. Tetrahedron 2004, 60: 3611 -
38c
Hodgson DM.Paruch E. Tetrahedron 2004, 60: 5185 - 39
Dechoux L.Doris E.Mioskowski C. Chem. Commun. 1996, 549 -
40a
Hodgson DM.Stent MAH.Wilson FX. Org. Lett. 2001, 3: 3401 -
40b
Hodgson DM.Stent MAH.Wilson FX. Synthesis 2002, 1445 - 41
Hodgson DM.Stent MAH.Štefane B.Wilson FX. Org. Biomol. Chem. 2003, 1: 1139 - 42
Eisch JJ.Galle JE. J. Am. Chem. Soc. 1976, 98: 4646 - 43
Satoh T. Chem. Rev. 1996, 96: 3303 -
44a
Hodgson DM.Gras E. Angew. Chem. Int. Ed. 2002, 41: 2376 -
44b
Hodgson DM.Buxton TJ.Cameron ID.Gras E.Kirton EHM. Org. Biomol. Chem. 2003, 1: 4293 - 45
Tokunaga M.Larrow JF.Kakauchi F.Jacobsen EN. Science 1997, 277: 936 - 47
Hodgson DM.Norsikian SLM. Org. Lett. 2001, 3: 461 - 48
Hudrlik PF.Hudrlick AM. In Advances in Silicon Chemistry Vol. 2:Larson GL. JAI; Greenwich: 1993. p.1 - 49
Hodgson DM.Comina PJ.Drew MGB. J. Chem. Soc., Perkin Trans. 1 1997, 2279 - 50
Hodgson DM.Kirton EHM. Synlett 2004, 1610 - 51
Hodgson DM.Kirton EHM.Miles SM.Norsikian SLM.Reynolds NJ.Coote SJ. Org. Biomol. Chem. 2005, 3: 1893 - 52
Hodgson DM.Reynolds NJ.Coote SJ. Org. Lett. 2004, 6: 4187 - 53
Yanagisawa A.Yasue K.Yamamoto H. J. Chem. Soc., Chem. Commun. 1994, 2103 - 54
Krizan TD.Martin JC. J. Am. Chem. Soc. 1983, 105: 6155 - 55
Hodgson DM.Reynolds NJ.Coote SJ. Tetrahedron Lett. 2002, 43: 7895 - 56
Hodgson DM.Bray CD.Kindon ND. J. Am. Chem. Soc. 2004, 126: 6870 - 57 There was a very small difference in chemical shift observed in the 1H NMR spectra between the olefinic protons (ΔδH = 0.48 ppm for 56). Aldehyde enamines typically have ΔδH = 1.5-2.0 ppm:
Kempf B.Hampel N.Ofial AR.Mayr H. Chem.-Eur. J. 2003, 9: 2209 -
58a
Crandall JK.Lin L.-HC. J. Am. Chem. Soc. 1967, 89: 4526 -
58b See also:
Apparu M.Barrelle M. Tetrahedron Lett. 1976, 33: 2837 - 59 The reaction takes ca. 16 h to consume all of the starting epoxide and LTMP has a longer half life in t-BuOMe than in Et2O:
Kopka IE.Fataftah ZA.Rathke MW. J. Org. Chem. 1987, 52: 448 - 60
Hodgson DM.Chung YK.Paris JM. J. Am. Chem. Soc. 2004, 126: 8664 - 61
Hodgson DM.Chung YK.Paris J.-M. Synthesis 2005, 2264 - 62
Shimizu M.Fujimoto T.Liu X.Hiyama T. Chem. Lett. 2004, 33: 438 - 63
Hodgson DM.Fleming MJ.Stanway SJ. J. Am. Chem. Soc. 2004, 126: 12250 - For recent examples, see:
-
64a
Capriati V.Florio S.Luisi R.Salomone A. Org. Lett. 2004, 4: 2445 -
64b
Capriati V.Florio S.Luisi R.Nuzzo I. J. Org. Chem. 2004, 69: 3330 -
64c
Ref. 52.
- 65
Hodgson DM.Bray CD.Kindon ND. Org. Lett. 2005, 7: 2305 -
66a
Jeong JU.Tao B.Sagasser I.Henniges H.Sharpless KB. J. Am. Chem. Soc. 1998, 120: 6844 -
66b
Gontcharov AV.Liu H.Sharpless KB. Org. Lett. 1999, 1: 783 - 67
Hodgson DM.Štefane B.Miles TJ.Witherington J. Chem. Commun. 2004, 2234 - 68
Beak P.Wu S.Yum EK.Jun YM. J. Org. Chem. 1994, 59: 276 - 69
Hodgson DM.Humphreys PG.Ward JG. Org Lett. 2005, 7: 1153 - 70
Hodgson DM.Miles SM. Angew. Chem. Int. Ed. 2005, in press - 71
Mukaiyama T. Tetrahedron 1999, 55: 8609
References and Notes
Present address: School of Chemistry, University of Nottingham, University Park, Nottingham, NG7 2RD, UK.
17For our preparation of i-PrLi see http://www.syntheticpages.org/search.php?&action = 1&page = 1&id = 195.
46The trans-stereochemistry was anticipated based on the reductive alkylation studies of Mioskowski and co-workers; see ref. 35.